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ABSTRACT

'\A new two dimensional panel method has been developed.

This method uses a new approximating element; the circular

arc, and a new singularity representation; the sine series,

and all integrations are performed analytically for maximum

computational efficiency. The method was applied to a

circular cylinder and to several different types of

airfoils, and a number of characteristics which define the

method were varied to determine their effects on the

solution.

The body is represented by a series of circular. arcs \

which are defined by sets of three points on the surface.

The singularity distribution is modeled by a power series

expansion in terms of the sine of an angular variable which

is related to the arc length of each panel. The method was

applied to the problem of flow over a circular cylinder, and

characteristics which define the method were varied.

Results indicated that accuracy was not significantly

affected by the type of singularity, while dramatic

reductions in velocity errors were achieved by increasing

the number of terms in the singularity series. Further,

increasing the number of panels also increased the accuracy

of the solution, the effect of singularity continuity was

xvii
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more apparent in the smoothness of the resulting velocity

distributions than in the accuracy of the solutions, the

method was not critically sensitive to control point

location, and the method was found to be computationally

efficient as the number of terms in the series was

increased.

The method was then applied to a Joukowski airfoil, a

NACA 0024 airfoil, a thin symmetric airfoil, and to both a

symmetric and a cambered Karman-Trefftz airfoil.

,Major conclusions from this study were that the method

produced very accurate solutions over the major part of the

airfoil, error reduction occured as both the number of

panels and the number of terms in the series were increased,

the effect of point source location was large but was local

and could be controlled, the method was generally

insensitive to minor variations in panelling, and the

accuracy of the solution increased as panel curvature was

increased from relatively flat to circular. -

xviii

6

b" ..



CO?1UTATION OF INCOMPRESSIBLE POTENTIAL

FLOW OVER AN AIRFOIL USING A HIGH ORDER

AERODYNAMIC PANEL METHOD BASED ON

CIRCULAR ARC PANELS

I. Introduction

The central problem in aerodynamics is to predict the

pressures, forces, and moments exerted on a body immersed in

a flowing fluid. One would like to be able to solve the

full Navier-Stokes equations for any configuration at one's

desk, but this is not possible today. Fortunately the real

needs of the engineering, research, and development

community both in the Air Force and in industry allow this

problem to be approached from several different levels. At

one level is the engineer who requires the details of a full

viscous solution, and is willing to spend the time and*0
computer resources required, and to accept the limitations

in geometric complexity which in some cases are necessary,

in order to obtain solutions of this nature. At the other

extreme is the engineer involved in perhaps a preliminary

design application. His requirement is for very rapid

solutions for general configurations which can be used to

develop airfoil or aircraft performance characteristics. He



might also require the capability for rapid development of

parametric studies to assess effects of small changes in

geometry or flight conditions on the flow over an airfoil, a

wing, or a full aircraft configuration.

While it is true that much progress has been made over

the last several years in the development of both Navier-

Stokes solutions and non-linear potential solutions, these

areas cannot as yet satisfy the engineering requirements

described above. For this reason much interest and

attention has been (and continues to be) focused on the

development and improvement of linear potential flow

solutions in general, and in the panel method approach to

obtaining such solutions in particular. The features of the

panel method approach which make it particularly attractive

are its computational efficiency, and its ability to

accommodate accurate geometric modeling. In addition, it

has been found that the linear potential flow model provides

sufficient accuracy for many engineering applications, and

indeed the panel method approach is used on a daily basis by

industry and government workers to solve a wide variety of

two and three dimensional aerodynamic problems.

Given the unquestioned value and utility of the panel

0 method approach to solving the linear potential flow

problem, the general goal of this dissertation, which will

be discussed further in this chapter, is to develop and

a. investigate a particular panel method approach in order to

2
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add to the level of understanding of such methods. The

purpose of this chapter, then, is to review the importance

of this theory and discuss the assumptions which led to it;

to formulate the mathematical statement of potential flow

over a body; to review and note limitations of current

methods for solving this problems; and to present the

objective of this dissertation.

Linearized Potential Flow

The ability of the linearized potential flow equation

to accurately model flow fields about realistic flight

vehicle configurations over a wide range of realistic flight

vehicle configurations over a wide range of flight

conditions is well known to aerodynamicists. These results

are used in two ways. First, they can predict lift,

moments, and induced drag for complex vehicles, and second,

they can be used as input to boundary layer calculations

which will predict friction drag and separation. In fact,

the accuracy of boundary layer calculations is generally

dependent on the accuracy of the input potential flow

solution.

The basic assumptions leading to potential flow are

that the fluid is inviscid, non-heat conducting, isentropic,

and irrotational. The success of the theory lies in the

fact that for the flow of air over a body the effects of

viscosity and heat transfer are confined to the boundary

3I



applicab'e, and in fact form the basis of the solution

method to be used in this study.

A crucial step in the solution of Laplace's equation is

the application of boundary conditions. In small

disturbance theory the boundary conditions are often applied

on a plane rather than on the actual surface of the

configuration. Although this linearization of the boundary

conditions is justified if the body is thin and if the angle

of attack is small, it produces a non-physical singularity

at the airfoil leading edge. This singularity can be

removed, however, by applying the boundary conditions on the

actual surface of the configuration, even though the

governing equation was derived using small perturbation

U' assumptions. This ability to apply boundary conditions

exactly and in a convenient way is an important feature of

the panel method approach to solving the potential flow

problem.

Statement of the Problem

The mathematical problem of potential flow about the

exterior of a body may be formulated in the following

manner. Consider a closed surface, S, (Figure 1) immersed

in a flow with free stream velocity . Let

4. 4. 4.
+v (3)

where is the total velocity and v is a perturbation
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velocity. Now v is irrotational; therefore

v= (4)

where P is the perturbation potential, Assuming M =0

for convenience, the governing equation for the flow becomes

V20= 0 (5)

in the region exterior to S The boundary conditions for

this problem are that the surface is impermeable, and the

perturbation velocities are zero at infinity. That is,

IVOI - 0 at infinity (6a)

V-n V *n = 0 on S (6b)

where n is the outward surface normal vector on S

Once a solution for k is determined, the pressure on S

is found from Bernoulli's equation as

*CP = 1 _ 1L--(7)

Iv 12

M1any approaches have been used to solve the problem

4 posed in equations five and six, including conformal

mapping, finite difference, finite element, and singularity

methods. Conformal mapping methods (Refs 3,4) have been

used to obtain accurate solutions in two dimensional cases,

7
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but they can not be extended to three dimensions. The

problem with using a conformal mapping approach is the

generation of mappings for arbitrary shapes.

There are many finite difference methods (Refs 5,6,7,8)

which solve the exterior potential flow problem, but they

are usually applied to the linear one represented by Eq 5.

These methods use transformations to map the physical space

into a computational space in which boundary conditions can

be applied with less difficulty. Results for general two

dimensional shapes have been obtained, 5ut the methods have

only limited ability to handle complex three dimensional

geometry. Disadvantages of finite difference methods as

applied to either the linear or non-linear problem are that

the solution must be found throughout the entire flow field

and that computer time and storage requirements are large

(even in two dimensions).

A newer approach is the finite element technique (Refs

9,10,11). Developed initially as a structural analysis

tool, there has been considerable application of the method

to fluid dynamics problems. It has had, however, relatively

little application to problems involving complex geometric

configurations, and shares with finite difference methods

both the disadvantage of requiring a solution throughout the

flow field, and the advantage of being applicable to the

non-linear formulation of the problem.

Finally, singularity methods have been used for many

3



a plane surface (for example, the camber line of a wing or

w airfoil) with no thickness to model the desired

configuration.

Compared to a discrete singularity method, a panel

method (or actually any distributed singularity method) has

advantages which are related to the order of the

singularity. One cannot compute flow quantities at a point

singularity because they are mathematically undefined there.

One can, however, make such computations on a panel

containing a distributed singularity, except at the

endpoints of the panel where the flow quantities are again

singular. However, this singularity is of a lower order than

the point singularity. This means that for a given level of

0 accuracy one can perform computations closer to the

endpoints of the distributed singularity panel than one can

to the point singularity. This is important because most

configurations of interest contain regions where one part of

the surface is near another part of the surface. An example

would be the upper and lower surfaces at the trailing edge

of a wing or airfoil.

Compared to finite difference (FD) and finite element

(FE) methods, panel methods may require less computer

resources for a given configuration and level of accuracy.

The reason for this is that to solve a three dimensional

problem, the FD or FE method must solve a partial

differential equation in three independent variables.
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This requires generation of a mesh of grid points which

fills the volume of the flow field. To solve the same

problem , the panel method must solve a two dimensional

integral equation. This requires generation of a mesh of

grid points only on the surface of the configuration. In

effect, the dimension of the problem that must be solved has

been reduced by one. This reduction also occurs if the

original problem is that once the panel method solution has

been obtained, the flow quantities can be determined at any

other point in the flow field by a simple matrix

multiplication. This is in contrast to the FD or FE methods

for which the solution in the flowfield is computed

certainty only at the grid points used to obtain it. One

could, of course, interpolate these values, but to obtain

velocities, for example, from a solution for potential, one

would have to use a numerical differentiation scheme of some

sort which would introduce additional inaccuracy into the

result.

Another advantage of the panel method compared to a FD

method is that the panel method can often model complicated

geometries more easily. The reason for this is that FD

methods often require a coordinate system which is fitted to

the configuration surface in order to simplify application

of boundary conditions. Generation of this coordinate

system can in itself require the numerical solution of a set

II



of partial differential equations. The panel

method,however, requires only the surface geometry as input.

Although the advantages of panel methods as described

above are important, it must be remembered that the method

gives a linearized potential flow solution to a given

problem. Both FD and FE methods are applicable to the non-

linear problem (potential and non-potential) as well. There

are many situations in which a non-linear solution about a

simplified configuration is more useful than a linearized

potential flow solution about a more detailed and exact

geometric representation of the configuration. Conversely,

it is also true that there are a great many applications for

which the linearized potential flow solution is satisfactory

and in these cases its characteristics of geometric

complexity and computational efficiency are highly

desireable.

Literature Review

The basic theory behind the use of a panel method to

solve the potential flow problem (a review of which is

given by Hess, Ref. 12) was developed from the priuciples of

potential theory (Ref. 13,14). The practical application of

the method was not feasible, however, until the digital

computer became available. Since the early 1960's work in

this area has increased greatly from initial efforts at

computing axisymmetric and non-lifting three dimensional

12
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flow, through higher order lifting two dimensional flow, and

lifting three dimensional flow, to the present day where

complex configurations are being calculated in supersonic

flow. This review will cover the major two dimensional

panel methods available today, followed by a discussion of

representative three dimensional work, and will conclude

with a summary of limitations in the methods available at

the present time.

Two Dimensional Methods. A large number of two

dimensional methods have been developed over the past

several years. Since many of them are similar in concept, a

representative sample illustrative of different approaches

has been selected for discussion. Table I presents some

general characteristics and unique features of these

methods.

Hess's low order method (Ref 18) used constant source

and vorticity distributions on flat panels. His higher

order method (Ref 15,16) models the surface as a series

expansion, truncated such that the representation is

parabolic, while the integrand in the velocity influence

integral is expanded in a series that assumes the surface is

nearly flat. The method also used source and vorticity

distributions in which the vorticity is assumed to vary

parabolically in arc length from the trailing edge of the

airfoil through the leading edge and back to the trailing
4

edge where it is zero. The higher order method shows
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increased accuracy over the lower order method, particularly

for internal flows.

Henshaw (Refs 19-28) has developed a variant of Hess's

higher order method which used a quartic polynomial

representation of the surface, and which expands the

velocity influence integrand about a circular arc rather

than about a flat panel. He reports an improved accuracy

with this formulation but his results are difficult to

interpret. Henshaw has also formulated an approach using

vorticity only, with an error parameter which allows

specification of circulation. This parameter is added to

the left hand side of the boundary condition equations with

a coefficient which is specified according to certain

criteria.

Bristow (Refs 29-31), using Hess's basic as well as his

higher order method has formulated two interesting

approaches to the problem. Using the basic method, he has

incorporated a singularity strength minimization procedure

which reduces source strength gradients, and thus errors in

tangential velocities. Using the higher order method, his

.. formulation allows a priori determination of the source

strengths, coupled with an error parameter approach to

obtaining the vorticity strengths. The second method also

produces singularity strengths with mild gradients and good

accuracy, but at lower computing cost than the first. Both

. 15



of these methods have a design capability as well.

WThe methods of Raj (Ref 32) and Keller (Ref 34) provide

different approaches. Raj used a piecewise linear vorticity

distribution on a surface described numerically, and all the

integrations are performed numerically in the physical

airfoil plane. His results are accurate, but the method is

time consuming. Keller's approach is to generate a

transformation which maps an airfoil into a near circle. He

then performs all integrations numerically in the circle

plane. This is advantageous because the integrals are

easier to integrate numerically on a circular or nearly

circular surface than on an arbitrary surface. This method

is not, however, extendable to three dimensions.

0 Three Dimensional Methods. A significant amount of

work has been done in the area of three dimensional panel

methods. Characteristics of the more important of these are

shown in Table II. These methods will be discussed further

in the following.

Hess's method (Refs 18,34,35) was the first surface

paneling method applicable to arbitrary geometries. It is

an incompressible method which uses flat panels to model a

configuration. Constant sources are used on body panels

while constant vorticity is used on wing panels. The wing

panels are lumped into chordwise strips over which a

parabolic distribution of vorticity is placed, so that only

4 one vorticity unknown is associated with each strip. A
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Kutta condition is applied at the trailing edge of each

strip to obtain this unknown, while the source unknowns are

found by applying a normal velocity boundary condition on

each panel. Hess has also developed a higher order three

dimensional method (Ref 36) which is basically an extension

of his two dimensional work. The new method has shown an

improved accuracy for a given number of panels, but is at

present a non-lifting method.

Woodward's basic method (Ref 37) was the first unified

(subsonic and supersonic) method for general configurations.

It modeled a surface with flat panels, which were not

necessarily contiguous. Linear sources and constant

vorticity were distributed on the panels to account for lift

effects and line sources and doublets provided body

thickness effects. A normal velocity boundary condition was

applied at a control point whose location was chosen so as

to provide the best results. This method was successful,

but was limited in the degree of geometric complexity that

it could model, and was sensitive to control point

placement.

In 1973 an improved version of the method (Ref 38) was

presented which retained a flat panel surface representation

but used linear source and linear vorticity singularities,

and which had planar and non-planar boundary condition

options. Linear sources were distributed on body surface

18



panels for both options, while on wing panels the planar

option used linear source and vorticity distributions, and

the non-planar option used only linear vorticity. A normal

velocity boundary condition was applied at a control point

located at a panel centroid. This method allowed more

accurate modeling of body shapes and exhibited reduced

sensitivity to control point location. There was a

difficulty, however, in using the non-planar option in

supersonic flow because the panels exhibited discontinuities

in slope and position. This caused disturbances to

propagate downstream inside the configuration being modeled

(that is, in the non-physical interior flow) in such a way

as to eventually destroy the solution on the exterior of the

o_ body.

Woodward has recently developed a solution to this

problem (Ref 39) using a combined source and vortex called a

triplet singularity. This singularity controls the interior

flow by cancelling perturbation velocities there without

explicitly applying boundary conditions in the interior

4 region. This approach has shown good results when applied

to bodies, but has yet to be applied to wings, or more

general configurations.

Robert's method (Refs 40-42) uses surface sources and

internal doublet sheets to compute subsonic flow about

general configurations. The surface is mapped to a

4 parametric plane where it is represented as a bicubic
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spline, and the singularity distributions are modeled as

bicubic splines on this surface. This approach is capable

of yielding very accurate solutions, but all the mappings

and the integrations of the influence coefficients are done

numerically; thus an extremely large amount of computer time

is required to obtain a solution. For this reason the

method has not been widely used.

Morino's method (Refs 43-45) is a general method for

unsteady subsonic or supersonic flow over arbitrary

configurations. It uses constant source and dcublet

distributions on hyperboloidal surface panels, with an

interior potential boundary condition. Preliminary results

using this method seem to be good, but it has not been

tested extensively to date. It should be emphasized that

the method was developed to solve the general unsteady

problem, and is perhaps the most advanced in this area.

Over the past ten years, researchers at the Boeing

Company have developed a general subsonic and supersonic

method applicable to arbitrary configurations. The method

has evolved from a low order subsonic method to a higher

order supersonic method known as the PANAIR (Paneling

Aerodynamics) system. In 1967 Rubbert et al (Ref 46)

described a subsonic method using flat panels with a surface

distribution of constant sources, and an interior doublet

distribution. The method produced good results, but the use

20

a



4

of the internal lifting system, coupled with the use of flat

panels limited the degree of geometric complexity which

could be easily and accurately modeled.

In 1972 Rubbert and Saaris (Ref 47) presented

additional results using the same basic method, but with the

addition of internal singularity sheets which were used to

maintain an internal flow which (although of no physical

interest) would improve the external flow characteristics.

This method was sensitive to the paneling arrangement since

it was a low order method.

To correct some of these problems, Johnson and Rubbert

(Ref 48) developed a higher order subsonic method. Key

features were the use of linear sources and quadratic

doublets distributed on curved panels, with internal doublet

sheets to provide lift effects. Since these panels were

developed by fitting, in a least squares sense, parabolic

curves through the actual surface points, the panels were

discontinuous. Further, the panels were restricted to being

only slightly curved through the use of a near field

expansion for calculating the influence coefficients. A far

field expansion was also used to increase computational

efficiency. Results were obtained for a randomly paneled

sphere and wing, which indicated the versatility of the

method.

The method was then extended to supersonic flow by

Ehlers, Johnson, and Rubbert (Ref 49) using linear sources
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and quadratic doublets on slightly curved panels with a

linearized mass flux boundary condition instead of the usual

velocity boundary condition. In addition, an internal

potential boundary condition was used to control

disturbances in the interior flow which tended to amplify as

they were reflected by the interior surface and which would

perturb or destroy the exterior solution. This approach

also allowed a-priori determination of source strengths

which reduced the order of the system of linear equations

which had to be solved. Results were presented for a

randomly paneled spindle, an inlet with nacelle, and several

wings which showed excellent agreement between experiment or

theory, and the computed results. A problem developed

however, because both the paneling and the doublet

distribution (which was found using a least squares

approach) were slightly discontinuous. This generated

singularities which propagated along Mach lines with

undiminished strength, and which, if downstream control

points were too close, could cause the influence coefficient

matrix to be singular.

The solution to this problem, given by Ehlers et al

4 (Refs 50-52) was to replace the discontinuous curved panel

concept by a continuous flat panel concept. Previous flat

panel methods used four input corner points to define a

single flat panel which did not necessarily pass through the

22



input points. This new method used four input corner points

to define five planar subpanels which passed through the

corner points and which were continuous with all neighboring

panels. The result modeled a surface with continuous flat

panels, and allowed the quadratic doublet distributions on

each subpanel to be exactly continuous along all edges.

This method has produced good results to date (Ref 53), and

is the first higher order supersonic method capable of

accurately modeling extremely complex geometric

configurations.

In general, low order three dimensional panel methods

are fairly complex, require large numbers of panels to

achieve a reasonable accuracy, and are sensitive to panel

0 and control point placement. The higher order methods have

reduced the number of panels required to achieve the same or

better accuracy, but at a cost of increased complexity and

computational requirements. Some comparisons between

several of these methods are given by Thomas and Miller (Ref

54), and Landrum and Miller (Ref 55).

Objective of Dissertation

The motivation for studying linear potential flow

methods in general and panel methods in particular stems

from the proven usefulness of these methods in a wide range

of engineering and research activity. It has also been

shown that current available methods are in general
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complicated require in many cases large numbers of panels to

achieve a given level of accuracy, and require a large

degree of expertise on the part of the user in order to

obtain satisfactory results. A partial reason for these

deficiencies is that the influence of a number of the

characteristics that define the panel method approach, in

both two and three dimensional cases, are not adequately

understood. These characteristics include panel curvature,

singularity distribution continuity, type of singularity,

order of the singularity approximation, the type of boundary

condition, the numerical implementation of the Kutta

condition, and control point location. The question of the

effects of these characteristics on solution accuracy for a

given method has not been fully answered.

The objective of this dissertation is to answer these

questions within the framework of a two dimensional

incompressible method as a first step in developing a fuller

understanding of the effects of these characteristics. The

results of such an investigation will provide guidance to

others who wish to develop two or three dimensional panel

methods for their own specific applications. To accomplish

this objective, a new two dimensional method, based on the

use of circular arc panels, has been formulated, and has

been extensively tested in applications to the cases of flow

over a circular cylinder and flow over several types ofI
airfoils.

24



The results have shown that accuracy increased as

additional terms in the series representing the singularity

distribution are kept, as panel curvature is varied from

flat to circular and as continuity of the vorticity

distribution is enforced. Additionally, the effect of

control point location has been found to be relatively

small, and the required number of panels for a given

accuracy has been found to be less than that required by the

method of Raj. The present method has also been compared to

Hess's higher order method as formulated by Bristow for a

thin airfoil, and has been found to give a small improvement

in computed perturbation velocities.

The following chapters of this dissertation will

discuss these points in detail. The next chapter will

briefly present some highlights of potential theory, and the

general panel method approach. Then the details of a new

paneling method based on circular arc panels will be

presented, followed by the application of this method to the

circular cylinder problem, and then to the airfoil problem.

Finally the conclusions resulting from this work and ideas

concerning possible extensions of the method will be

4presented.
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II. Two Dimensional Potential Theory

The purpose of this chapter is to present briefly some

basic facts about potential theory and surface singularity

distributions which will have direct application to the work

that follows. It will be seen that the panel method

V approach to solving flow problems is dependent on the

results of potential theory. Harmonic functions will first

be discussed from a partial differential equation viewpoint,

followed by a presentation of the Green's theorem

representation of a harmonic function. Some characteristics

of surface singularity distributions and some relevant

properties of integral equations will then be discussed.

Finally the reduction of the Green's theorem formulation to

an integral equation will be considered along with some

unresolved questions which arise in this formulation.

Harmonic Functions

'6 Solutions to Laplace's equation are called harmonic

functions. Such functions have properties which allow the

development of the integral equation method which is the

* lbasis of the panel method approach to solving Laplace's

equation. This equation has also been studied considerably

from a partial differential equation viewpoint in which one

"o determines conditions which guarantee the existence and

26
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uniqueness of solutions to a given equation which is subject

to a particular specification of boundary conditions.

The general boundary value problem can be stated as

follows: find a function @ which satisfies V2  = 0 in a

region R and where either 0 = f(s) or f(s) on the
3n

boundary of R, and where f(s) is a known function. If

is specified, this problem is called a Dirichlet

problem; while if - is specified, it is called a Neumann

problem. The existence and uniqueness of solutions to these

problems depends on whether R is an interior or exterior

region. Given that the boundary values are continuous and

that the boundary is sufficiently regular, Table III (Ref

14) summarizes the conditions for which these problems have

0 solutions.

These results from the theory of partial differential

equations will be used to verify the correctness of the

integral equation formulation of the problem which leads to

the panel method solution to Laplace's equation. This

formulation is dependent on the property of harmonic

14 functions that is statfi in Green's theorem.

Green's Theorem Formulation

Using Green's theorem, the value of a harmonic function

at any point in a region may be expressed in terms of its

value on the boundary of the region. This form may then be

interpreted as a singularity distribution on the boundary.
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TABLE III

Boundary Value Problem Solutions

Boundary Region
Value Prob.

Interior Exterior

Dirichlet Solution No Solution

Neumann Solution* Solution

* If and only if f-{dl = 0

B

Green's theorem may be applied to harmonic functions which

are single valued in some region. The problem may be

formulated in two dimensions by considering (Figure 2) two

harmonic functions, @ and j , and two regions, R and

R- which are divided by a boundary curve B. The curve b is

called a barrier and is required to make R a simply

connected region which then insures that p will be single

valued there. If P is a point in R, it can be shown (Refs

13,14,56) that

1

B

(8)

+- ($ - $ ) + (log r) db

b
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and also that

1(P) (log r - (log r))dl = 0 (9)

B

Adding Eqs 8 and 9 gives

.)= I (log r(.n - - (0- ,i)--(log r))dl

B an

(10)

+- ( -  (log r) db

b

Equations 8 and 10 show that is not uniquely determined

until both ¢ and 01 are specified on B. This means that

the solutions for R and R, are independent in the sense that

the solution could be changed in one region without changing

the solution in the other region.

Velocity Potential. If ¢ and 01 are assumed to be

velocity potential functions and if a --oi- and

S - then Eq 10 becomes

o(P) 1 f (a log r -L(log r)) dl
B

+ f"- (¢+ - (log r) db

b
The first integral in this equation can be interpreted as

the potential due to a source distribution of

strength and a doublet distribution of strength u on B
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while the second can be interpreted as the potential due to

a doublet distribution of strength ' on b. As noted

above, is not unique unless both a and 1 are

determined. One procedure would be to specify a-priori

either a or i , and then apply another boundary

condition to determine the remaining unknown. This is

equivalent to specifying the solution in R, and then solving

for the solution in R.

Suppose a is specified on B to be a = 0 . Then Eq

10 becomes

(P) (log r)dl + r))db2iT 3n 2r3B b

(12)

where
A = ¢+- C-

Since € is a velocity potential A0 is the circulation

around B, and is constant. Also, since the location of b is

arbitrary, the normal and tangential derivatives of ¢ are

continuous across b (Ref 13). Therefore 6e is constant on

b, and the second integral in Eq 12 represents a constant
6

strength doublet sheet extending to infinity and is

equivalent to a wake. If, however, '=0 on B, then Eq 10

becomes
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I F--

(P) = j- a log r dl (13)

B

In this case = 0 implies that p = on B and thus

that + because 01 is single valued in RI;

therefore the integral over b is zero. This also means that

one cannot obtain circulation, or lift, using a source

distribution only.

Stream Function. In the last section ¢ was assumed

to be a velocity potential function, although the general

formulation is not dependent on this interpretation.

Since P may be any harmonic function, assume that it

represents a stream function p . If there are no sources

inside B then ' will be constant (single valued) on B

because it is a measure of the mass flux across the curve B.

Thus +P ='P , and the expression equivalent to Eq 10 is

(log r ( - n )-('-'P) (log r)) dl (14)

B

If it is assumed that ' = 'i on B, and that

Y l-p- then

( 1 y log r dl (15)

B
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Thus the stream function can be represented in terms of a

surface distribution of vorticity with strength y

Although Eq 15 does not contain a wake term as does Eq 12,

it does not necessarily represent a zero circulation case.

Doublet-Vorticity Sheet Equivalence

Hess (Ref 35) has shown that the velocity field due to

a surface distribution of doublets (whose axes are normal to

the surface) is equivalent to the combined fields of a
-.

distribution of vorticity on the surface where Y = n X VUI

and a line vortex on the bounding curve of the surface whose

strength is equal to the strength of the doublet

distribution 3n the curve. For the two dimensional case

(Figure 3) a constant doublet sheei of strength P from A

to B is equivalent to two point vortices at A and B of

strength i . This means that a velocity field represented

by a distribution of sources and/or doublets can also be

represented by a distribution of sources and/or vortices.

In the case of a constant doublet distribution on a wake,

the equivalent vorticity distribution consists of a pair of

point vortices, one at the start of the wake, and one at

infinity. On the wake lp -constant implies VP = 0 , and

thus y = 0 on the wake. Therefore Eqs 12 and 15 are

consistent and in fact are equivalent.
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S= constant

A B

. A B

Figure 3. Doublet/Vortex Sheet Equivalence

Singularity Behavior

Using Green's theorem it is clear that the problem of

potential flow over a body can be modeled using several

types of singularity distributions. These surface

distributions exhibit certain properties which affect how
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Figure 4 - Properties of Singularity Sheets

they may be used to model different types of flow.

Transfer of boundary conditions. Consider the

singularity distributions shown in Figure 4 where subscripts

e and i stand for surface exterior and interior,

respectively. For the source sheet, the potential and the

tangential velocity are continuous across the sheet, while

the normal velocity is discontinuous. For the vortex sheet

the opposite is true; that is, the potential and the

tangential velocity are discontinuous across the sheet while

the normal velocity is continuous. The importance of these

properties, as emphasized by Rubbert (Ref 57) is that they

cause certain characteristics to be transferred across the
6

surface. For example, consider a source sheet on a closed
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surface. If somehow a distribution is specified that gives

a particular solution in the exterior region, the resultant

exterior tangential velocity distribution is carried across

the sheet and becomes the boundary condition specification

on the interior region. In the case of a vortex

distribution, the normal velocity is transferred across the

sheet so that the interior problem becomes effectively a

Neumann problem. But recall that the condition ensuring a

solution to this problem is that the net normal velocity, or

flow, be zero, which is simply a statement that an

incompressible fluid cannot be pumped into a closed region.

One procedure for alleviating the problem of a non zero net

normal flow would be to place a sink inside the surface to

remove any excess fluid.

Singularity Behavior at Corners. The above properties

of singularity sheets apply to surfaces which are smooth to

some order. However, many bodies of interest have slope

discontinuities at one or more points, such as an airfoil

with a sharp trailing edge. Craggs and Mangler (Ref 58)

have studied the behavior of source distributions at corner

points. They find that the source distribution behaves as a

power of distance to the point with the value of the powerI

depending on whether the flow is symmetric about the corner

and whether the corner is concave or convex to the flow.

For the case shown in Figure 5, which is symmetrical flow
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Figure 5. Behavior of a Source Sheet at a Corner.
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about a convex corner, the power is positive, so

that a - 0 as s + 0 . Thus in modeling an airfoil with

a source distribution this behavior should be considered.

Integral Equations - Existence and Uniqueness

In this section some results from the theory of

integral equations (Refs 59, 60, 61), which will be applied

in the following sections, will be discussed. Equation 16

*is the general form of a Fredholm integral equation of the

second kind where K(x,y) is a given kernel function,

b

O(x) - Xf K(x,y)o(y) dy = f(x) (16)

a

f(x) is a given function, X is a parameter, and O(x) is

the unknown. Several results can be stated about this

equation.

1. Either Eq 16 has a nontrivial solution, or the

associated homogeneous equation

0 b

w(x) -xf K(x,y)w(y)dy = 0 (17)

a

has a nontrivial solution. The values of X for which Eq

17 has nontrivial solutions are called eigenvalues, and the

solutions w(x) are called eigenfunctions.

2. If X is an eigenvalue of Eq 16 then this equation
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6

is an inconsistent equation (i.e. has no solution) unless

t" • b

fu(x) f(X) dx 0f (18)
a

where

b

u(x) -XfK(y,x)u(y) dy =0 (19)

a

3. If Eq 18 holds, then there are an infinite number

of solutions to Eq 16 of the form

(x) (x)+ mw(x) (20)

where p is a particular soluti n, the cm are arbitrary

constants, and the summation extends over the set of

linearly independent eigenfunctions., w Another
m

important property of a Fredholm equation of the second kind

is that it is equivalent to a system of linear algebraic

equations.

While Fredholm integral equations of the second kind

have some very nice properties, Fredholm equations of the

first kind, of which Eq 21 is the general form, do not.

b
X\ fK(x,y)O(y)dy = f(x) (21)

a

f(x) = known function

It can be shown that equations of this type do not always
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• (have solutions, and the solutions of solvable cases are

often not unique. This question can be related to the

properties of the Dirichlet and Neumann problems which

required, essentially, that there be no net flux into a

closed region. Equations 16 and 21 will be used, with some

modification, to solve several problems in the succeeding

sections.

Reduction of the Singularity Distribution Formulation to

an Integral Equation

Consider the problem of two dimensional incompressible

flow about a body, B, immersed in a free stream, , as

shown in Figure 6, where P is a field point, q is any point

on B, r(P,q) is the distance between P and q, and nq is

the outward normal to B at q.

Surface Source Distribution. The velocity potential

function may be represented as a source distribution on B by

-I / (22)
a(P) = j-fa(q)Ks (P,q)dl

B

where K (P,q) is the source kernel function in two

*dimensions

K s(P,q) = log(r(P,q))

4 It can be shown (Ref 14) that if Eq 22 is differentiated and
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Figure 6. Reduction to an Integral Equation.
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if the field point P goes to a surface point p one obtains

_) 2 I - 1- f(q)-p(Ks(pq))dlpe 2Br ' (23)

where a/an means the derivative in the normal direction
p

to B at p, and the subscript e means that P goes to p in the

region exterior to B. Similarly,

an- p I9(q) - (Ks(p,q)dl (24)p2i B

If the total velocity in the field

is V where V = V then the standard boundary

condition of zero external normal velocity can be written

Vne (p) = Von (p) + vn (p) = 0 (25)

or

vn (P) =-V (p) (26)
ne n

* ibut

Vn (p - a(q) (Ks(P,q))dl
*e e B

therefore
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G(p) - ( f (q) -(K s(pq))dl = -2V (p)

B

This is a Fredholm Equation of the Second Kind for the

source strength G(p) on B. Before the results presented

earlier for this type of equation can be applied, the kernel

K(p,q) p (K(p,q))
p

must be considered. A cursory examination indicates

that K(p,q) is singular at q=p but it can be shown

that in the two dimensional case the singularity is

removable if the curve B is sufficiently smooth.

Conditions for Solvability. What constitutes

sufficient smoothness is not completely clear, Tricomi (Ref

59) and Sternberg and Smith (Ref 62) specify that B have

continuous curvature. Mikhlin (Ref 63) and Pogorzelski (Ref

64) require that the surface satisfy the following

conditions (which are called Liapunov conditions):

1. The surface has a definite normal at each point.

2. There exists a number c>0 such that a sphere of

radius c centered at a point on the surface cuts a portion of

4d the surface such that every line parallel to the normal at
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the point cuts the portion only once.

3. The angle between the normals to any two points on

the surface satisfies the following:

lel z arc

where 0 is the angle between the normals, r is the

distance between the points, and a and e are positive

constants. This question will arise again when these

theories are applied to shapes of actual aerodynamic

interest, the majority of which have at least one point of

slope discontinuity. The question of applicability of the

theories to such surfaces has not been satisfactorily

resolved to the author's knowledge. It might be reasoned

that the actual viscosity in the boundary layer will

effectively round off any corners, and this may be the

answer. Also, although all methods exhibit decreased

accuracy in the trailing edge region, the quality of

solutions over the remainder of the airfoil does not seem to

be adversely affected.

4If it is assumed that B has the requisite smoothness,

and noting that 1 is not an eigenvalue of Eq 28, it is

known that a unique solution exists for any given free

stream flow. The problem just posed is equivalent to the

Neumann exterior problem seen earlier and does indeed have a

unique solution. Recalling the discussion of the properties

of source sheets, since the potential is continuous across
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the sheet, a Dirichlet boundary value problem is effectively

imposed on the interior of B.

Surface Vorticity Distribution. Now consider the same

problem assuming a vortex distribution on B. The stream

function for the singularity distribution is

t(P) = fy(q) log (r(P,q)) dl (29)

B

where y(q) is the vortex strength. But the boundary

condition will be applied in a way first suggested by

Martenson (Ref 65). Consider the total stream function of

the flow,

T. =T. + (30)

Now on a streamline, such as a body surface, i = constant,

or

0 =(31)

where t is the surface tangent direction. Equation 31 is

actually a statement of zero external normal velocity. To

see this, consider the following boundary condition:

+ 0 (32)
3n Dn 3n~
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which is a statement that the total internal tangential

velocity on B is zero. Now Green's theorem for Y states

that

ff TVzT+V.VT) ds = DT dl (33)

S B 1

where S is interior to B. Also,

V2T= 0 in S

and

VT-= V 2

where V is the total velocity inside B. Thus

ffv f 3n (4Jf-v. 2ds =f - - dl (34)

S B 1

Now the boundary condition is

onB (35)

~~1

so that

ff J~2ds 0 (36)

S

but this means that V = 0 inside B. Further, this implies

that ' = constant inside B, and thus
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- -0 on B (37)
at.

ii

Now T is the interior normal velocity on B, and since
1

the tangential derivative (normal velocity) is continuous

across a vortex sheet

onB (38)

e

This is just a statement of zero exterior normal velocity,

as it was desired to show. Now computing explicitly,

n- - y(q) =n (log r) dl (39)
P # e B

and

2 -. 2 y(q) .7 (log r) dl (40)
p i B

so that subtracting these gives

S)--L) = y(p) (41)
. Pe P i

U Now consider the total external tangential velocity given by

Eq 42 which is actually the quantity of interest.
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(42)
e e

Using Eqs 32 and 41, this can be written

3T Y(43)-) = Y(P)
e

This states the important property that the total external

tangential velocity is equal to the local vorticity

strength.

Now consider the integral equation results as they

apply to this formulation. Applying Eqs 32 and 40 one

obtains

-- y(p) 1 f ay-)
an 2 2- y(q) - (log r) dl =

an an B anBP

(44)

Y(P) + - y(q) L (log r) dl =2
f ~an n

B

This is again a Fredholm equation of the second kind, but

now the parameter X = is in fact an eigenvalue. From
7r

the earlier discussion of integral equations it is known

that when a solution does exist , it is not unique. This

non-uniqueness will be removed by the application of a Kutta

condition. In later parts of this work a vortex

distribution to which is applied the standard zero exterior
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The problem of two dimensional incompressible potential

flow over a body can be formulated, using the concepts

discussed above, in terms of a singularity distribution on

the surface of the body. The different singularity types

have different characteristics which determine whether they

will be effective in a particular application. Once the

singularity has been chosen and the problem has been reduced

to the appropriate integral equation, additional numerical

approximations must be introduced in order to obtain

solutions for arbitrary geometries. The details of these

approximations form the basis of the panel method approach

to solving this problem.

In the next chapter a new panel method will be

presented. The method is based on the use of circular arc

* panels with higher order singularity distributions.

.5

4

50

a



4

III. Panel Method Approach

The purpose of this chapter is to formulate a new

method of obtaining an approximate solution to the integral

equations developed in the preceeding chapter using the

panel method approach. This method is based on the concept

of approximating the surface of a two dimensional body by a

series of circular arcs on which higher order source and

vorticity distributions are placed.

Any panel method consists of certain assumptions and

approximations concerning the basic elements of the integral

equation. These elements include the approximate

representation of the surface over which the integral is

taken, the approximate representation of the singularity

distribution which is assumed on the surface, the type of

boundary conditions which are applied, and the procedure by

which the Kutta condition is satisfied.

The next section will discuss different ways of

representing the surface, and will give the rationale for

4 the choice of the circular arc element, as well as details

of the numerical implementation. This will be followed by a

discussion of the types of singularities available and the

procedure by which the singularity strength is approximated

on a panel. A discussion of the boundary conditions that
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will be applied will follow. This will include the

reduction of the velocity boundary conditions to a matrix

equation, and a discussion of the form of the Kutta

condition which will be used. Finally, the reduction of the

method to a system of linear algebraic equations and the

procedure by which the system is solved will be presented.

Surface Representation

The integral equation to be solved contains an integral

over a surface for which an analytic description will not

usually be available, and even if it were available, the

evaluation in closed form of the resulting integral would

generally be impossible. Therefore, a suitable

approximation to the surface must be found which will

capture those features of the surface essential for an

accurate solution, while allowing evaluation of the

resulting integrals in a straightforward way. Geometric

features which characterize a curve include position, slope,

curvature, and higher order derivatives; but the question

as to which of these features is essential for an accurate

solution has not been adequately answered in the literature.

The approach which will be used has been considered by
I

Johnson (Ref 66) in a computer graphics context. This

approach is to approximate a curve in a simple way by using

a set of standard, or primitive, elements and accepting theI
level of error which results from the choice of the element.
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As noted by Johnson, this is in contrast to a spline

approach in which geometric properties of a curve are

matched by using as complex an element as is required to

accomplish the matching.

The simplest way to approximate a plane curve of

moderate curvature is to use a series of straight line

segments (Figure 7). Increasing the accuracy of the

approximation can be achieved by increasing the number of

linear elements. The use of higher order curves may reduce

the required number, although at the cost of introducing

additional complexity. In an attempt to balance accuracy

with complexity, several conic arc curves were considered.

In the next section flat, parabolic, circular, and elliptic

arcs will be evaluated as to their use as a standard

approximating element.

Conic Arc Approximation. Consider an arbitrary

curve n = n(O) described in a tangent-normal coordinate

system with the origin at some point on (Figure 8) so

that

n(O) = n'(O) = 0

The problem is to approximate this curve in the

region a & b using the following:

1. a straight line segment given by nf(M)

2. a parabolic arc given by n (p)

3. a circular arc given by c(O)
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4. an elliptic arc given by ( )

where these curves are given in the tangent-normal

coordinate system such that

nh(O ) = n'h(O ) = 0 h = f, p, c, e

An error function Eh(E) can then be defined to describe the

approximation in terms of the error in position, slope, or

higher order derivatives. That is

n(n

where n is the nth derivative of the function. If these

curves are expanded in a power series about = , and if

the approximating curves are equated term by term with the

actual curve, the errors of the approximation are given by

Ef(E) = 0(W2)

E (E) = 0(W3)
p

E i= o(m 3)Ec(

E (E) =0(E)
e

Circular Arc Approximation. The circular arc has been

* chosen as the standard element for several reasons. From

the analysis above it can be seen that the accuracy of the

approximation increased as the nature of the element changes

from flat to elliptic, and that the errors resulting from
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Numerical Implementation. The problem is tV del a

planar curve using a piecevwise continuous set of circular

arc elements. It is assumed that the curve can not be

described analytically, and will be represented by a set of

coordinate points, input in the case of an airfoil from the

trailing edge in the order indicated in Fig 9. The general

equation of a circle is

x2 +y2+Dx+Ey+F =0

where D, E, and F are constants; where the center of the

circle is located at xO =- ,and yo - and where

the radius of the circle is a=VD214 + ET/4-F Given

three points on the surface (Fig 10) these three constants

can be obtained. Let P m(x M ym) for m-1 ,2 ,3 be three

points on the surface such that

xmD+ymE+F = _(XM2 +yM2) m = 1,2,3

This system can be solved to give

D = [X3 2 +y3 2 -(Xl2+Yl2)J(Y 2 -Y3 )-(YI-Y 3 )[X 3 
2+Y 3 

2 _(X2
2 +yZ,')]

4 W

1E = (XI-X3 )[X3 2 +Y 3 -(X 2 
2 +yZ 2 )1-(X2-X3)[X3 

2+y 3
2 -(X,2 +yl2)]

F = (XZ2+Y32 )-X3D-Y3E

where

W =(X1-X3)(y2-y 3 )-(X 2 -X 3 )(y 1 -Y 3 )

57



y

P
2

' 
?i

Figure 9 - Surface Coordinate Order of Input

Input Points

SP3
y a-

Resulting 3 \ i
Circle

radius -a

P(x ) P1

Figure 10 - Circular Arc Panel Geometric Definition

4

4 58



and from these the circle radius and the location of the

center can be obtained.

The computer program which implements this procedure

sets an arbitrary lower bound for IWI which effectively

determines how close the three points can be to lying on a

straight line. While a straight line can be interpreted as

a circle of infinite radius, the computer code will not

accept this.

The effects of element curvature can be studied by

passing the approximating circular arc through three

points P1 , P2 , and P (Figure 11) rather than

through P1  P2  , and P 3 as described above. The point P

is defined by a parameter a given by

0< =

where k and Z.p are defined in Figure 11. As a varies

from 0 to i, P moves from P4  to P3 , and the curvature of

the resulting circular arc changes from 0 to the curvature

of the circle through the original input points P1  , P 2

7 and P3  . Note that the approximating arc always goes

through the points P1 and P2 • The result is that the

actual airfoil is modeled as a series of connected circular

arcs. Having developed an approximation to the surface

geometry, the next step in the formulation of a panel method

is the representation of the surface singularity

distribution. This will be discussed in the next section.
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Singularity Representation

It has been shown that source, doublet, or vortex

singularities can be used to model potential flow problems,

and that the doublet and vortex singularities are

equivalent. The source singularity is incapable of

generating lift on a body and its exclusive use would be

unsuitable for lifting cases. Beyond this, however, there

is little information available to indicate which

singularity is the better one to use for particular

applications. In terms of modeling the physical flow it is

felt that the vortex singularity is more directly related to

the actual flow since one is trying to model the viscous

effects of the boundary layer by using the potential vortex

sheet on the surface. The source or doublet singularity is

more difficult to interpret physically, and for this reason

it is believed that the vortex singularity provides more

insight into what is actually happening in the flow near the

surface. Since part of the purpose of this effort is to

study the effect of choice of singularity on the solution

the use of both the source and the vortex singularities will

be investigated.

Series Expansion. The singularity strength

distribution will be represented as a series expansion of

the form

6
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p

Q-l

-() = Z qk sink(el) (47)

k=O

while for the airfoil cases the series used was an expansion

about the panel midpoint 6, so that

G(e) = qk sink(e-eM) (48)

k=O

Here Q is the number of terms in the series. In the

applications to follow Q will be varied from 1 to 4 in order

to study its effect on the solution. It should be noted

that Q is also the total number of unknowns on a panel so

that the total number of unknowns for a problem which is

modeled by N panels will be Q-N. The two forms for

singularity strength given above are essentially equivalent,

although they exhibit certain differences in numerical

characteristics which will be discussed in later sections

where they are applied.

Continuity Conditions. An important part of this study

will be to consider the effects of singularity strength

continuity on the accuracy of the solution. This can bea
done by numerically requiring continuity of the singularity

strength and its derivatives across panel junctures. The

purpose of specifying continuity of derivatives is to obtain

continuity of slope (or higher derivatives) of the function
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TABLE IV

Definition of Continuity Parameter C

C Singularity characteristic at panel junctures

0 discontinuous

1 continuous

2 continuous derivative

3 continuous 2nd derivative

with respect to arc length along the airfoil. It will be

convenient to characterize the singularity strength in terms

of the degree of continuity which is imposed. For this

purpose a continuity class parameter, C, can be defined as

in to Table IV.

On a circular arc of radius a the arc length S is given

by s = ae so that

n  n en

* Now if ( )j refers to quantities on the jth panel, then

the condition of continuity of the function from panel j to

panel j + 1 (that is a class C = I function) can be

* expressed using Eq 48 as
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(49

-- q ('i+6 j ) = J l(6'!j - 6j ) (49)
i if i j+ + 1 j+1

Likewise the condition for continuity of derivatives can be

expressed as

1 a a(aGM +6j) 1 nj+* i+1-6j+l(50)
aea (50)a n  36 n  a n  ae n

Equating these expressions gives equations which enforce

continuity of the function across panel junctures through

the derivative. The singularity strengths can be

written using Eq 48 as

Q-1

a (= + qk sink(6.) Q = 1,2,3, or 4

k=O

and

Q-1

j+l(e,1 +6 j+ ) = kqkj+l j+ )
Sj+l' sin

Substituting these into Eq 49 and 50 gives a matrix equation

which prescribes continuity to class C at panel junctures ofi4

the form

Q-1

[cCZ]{Qk} = 0 (51)
- k=O

Here the [C ] denote NXN continuity coefficient matrices

and the (Qk}  denote NX1 column vectors whose elements are

the unknown qk's . The derivation of the [Ck] matrices
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procedure for reducing the velocity boundary condition to a

matrix equation will be given, followed by a discussion of

the Kutta condition which will be used.

Velocity Boundary Condition. To illustrate the

procedure of reducing the boundary condition to a matrix

equation, consider the case of a normal velocity boundary

condition applied to a surface on which is placed a source

distribution. From Chapter II (Eq 27) the induced normal

velocity at a point p on the surface is given by

, V(P )  lim 1 AKs

v (p) -i a(q) _ dln P-p 7 Dn~
B

which becomes

(p) () I fp (q) (Ks ) dl

B

Now if the surface is modeled with N panels, and if the

source distribution on panel j is

Q-1

aj(q) = qk k (q)

k=O q

where the f are known functions and the qk are

unknown constants, then the normal velocity at

the i th control point is
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+- Vn(Pi) lim 1 f qf)dl
n Z. Z P-p. 2r J, k k~ an sij

panel

The integral over the surface becomes a sum of integrals

over each panel which can be computed analytically. In

matrix form this can be written

Q-1

{Vn} = E [Rk){Qk}

k=O

where [Rk ] are called aerodynamic influence coefficients

and are given by

R 1b 
R lim 1 fk Kij dl.
, ij Pi 2T panel k anp i

th
If V (pi) is the normal velocity at the i t

.2n
control point due to the free stream, the statement of zero

total normal velocity becomes

Q-1
S[Rk ] {Qk }  00 {-

." k=On

The detailed equations for the ERk ] are given in Appendix

B. The formulation if a vortex singularity is used is the

- same, and influence coefficients for this case are also

given in Appendix B. As noted earlier the vortex case
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requires an additional condition to ensure uniqueness of the

solution.

Kutta Condition. The requirement for a Kutta condition

in a lifting potential flow model is well known. In Chapter

II it was noted that such a condition was needed to obtain

a unique solution to the problem of flow over a body using a

surface vorticity distribution. The application of the

Kutta condition is an important step in a potential flow

model because it is essentially the link between the real

viscous flow and the potential model that allows an accurate

determination of the lift on a body.

Theoretically the Kutta condition requires a finite

flow velocity at a sharp trailing edge. While there are

many ways to achieve this requirement, three methods,

depicted in Figure 13, have been used in this study; a

specification of net circulation, a trailing edge bisector

condition, and a specification of zero vorticity at the

trailing edge. The specification of net circulation will be

used to study the circular cylinder problem, but it is not

useful in the study of a general airfoil since the net

circulation is not known.

The trailing edge bisector condition (Figure 13b)

involves a specification of zero velocity at a

point Ax from the airfoil trailing edge, and in a

direction normal to a line which bisects the airfoil
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trailing edge angle. The distance Ax , which must be

specified a priori, should be small, but beyond that it is

arbitrary. While this procedure has given good results in

solving the airfoil problem, the arbitrariness in

choosing Ax is undesireable.

The last method, specification of zero vorticity at the

trailing edge, has been used to obtain the majority of the

airfoil results which will be presented later because it is

felt that it is conceptually the most logical approach. It

is based on the fact that, for a surface distribution of

vorticity with an appropriate boundary condition such that

the internal flow is stagnated, the surface vorticity equals

r the tangential velocity on the surface. Since the

trailing edge should be a stagnation point where the

tangential velocity is zero, a specification of zero

vorticity at the trailing edge, both upper and lower

surface, is an equivalent Kutta condition. A problem with

this specification is that two equations are required, one

for the upper surface and one for the lower surface, and

thus the complete problem is overspecified by one equation.

One way to circumvent this is to use an error parameter

approach (Refs 26, 31) in which a uniform but unknown error

t in normal velocity is assumed at each control point. The

equation for zero normal velocity becomes

4 t+V =-V
n.
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where V is the ith row of
n.

Q- 1

="k=O

More generally this can be written as

[M]{T}+{V } = {-V. I
n

where

{T1 =

and E is a diagonal matrix of weighting factors which

selects the control points at which the error will be

applied. Usually the nonzero elements of M would be 1.

Henshaw and Bristow have had success with this approach, but

it is felt that the major drawback to it is the high degree

of arbitrariness it introduces into the formulation.

In a second method, used by Woodward (Ref 38), a source

of unknown strength is placed inside the airfoil to provide

the required additional unknown. Recalling the discussion

of potential theory it was found that the problem of a

vortex distribution on a closed body with an external normal

velocity boundary condition produced an ill posed problem

unless the net inflow through the surface was zero.

Theoretically this is the problem under consideration, but

in the numerical formulation, the net inflow condition
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cannot be satisfied because boundary conditions are applied

only at discrete points. The internal point source can be

thought of as a method of removing any excess fluid that

flows into the body as a result of imperfect satisfaction of

the boundary condition. The procedure is to place a point

source inside the body, and add a term reflecting the effect

of the source to the equation for normal velocity at each

control point. Since the location of the source is

arbitrary, this is a parameter whose effect on solution

accuracy must be studied.

Numerical Implementation

The basic elements of a new panel method have been

developed in the preceeding sections. They include the

choice of surface and singularity representations, the

selection of velocity and continuity boundary conditions,

and if necessary the choice of a Kutta condition. In this

section these elements will be combined into a system of

linear algebraic equations which will be solved using

6I standard methods.

Matrix Equation Formulation. The procedure for

obtaining the solution to the airfoil problem using a source

distribution is to model the airfoil with N panels. The

number of terms, Q, in the singularity representation is

then chosen, so that the problem has a total

U of Q.N unknowns. The desired continuity class, C, of the
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singularity strength is then chosen. This formulation means

that with Q unknowns per panel and C continuity conditions

per panel, a total of L = Q - C velocity boundary conditions

must be applied on each panel in order to have a

determinate linear algebraic system. These control points

will in general be equally spaced on a panel, as shown in

Figure 14.

The full system of normal velocity boundary conditions

and continuity conditions can be written

Q-1

[R h{Q} = -V h = 1,2, ...L
n~k=On

Q-1

[Cm]{Q k } = 0 m =01,...C
k=O

These can be combined into one Q.N by Q.N system

[A]{X} = {B}

For the vortex singularity case in which an internal point

source is added, and the vorticity is specified as zero at

the trailing edge, an additional unknown and one equation

must be added so that the full system

is (Q.N+1) by (Q-N+1)

Method of Solution. Although many algorithms are
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Panel

b. 3 and 4 Control Points per Panel

Figure 14 - Control Point Spacing
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available for solving systems of linear equations, no

special effort was made in this study to evaluate different

methods. A standard routine from the International

Mathematical and Statistical Library (IMSL)(Ref 67) was used

in all cases. This routine performs matrix inversion using

Gaussian elimination with equilibration and partial

pivoting. It should be noted that the system developed

above exhibits no special characteristics such as bandedness

or symmetry which would allow the use of solvers designed

for such cases.

-In this chapter the general panel method approach to

solving potential flow problems has been outlined and the

details of a new panel method have been presented. The new

method is based on the use of continuous circular arc panels

to model a two dimensional surface. A surface singularity

represented as a higher order sine series expansion is then

distributed on the panels. This distribution is given a

specified degree of continuity, appropriate velocity

boundary conditions are applied, and the problem is reduced

to a system of linear algebraic equations in which the

unknowns are constants in the assumed singularity

distribution.

There are several parameters in this formulation which

affect its results, including type of singularity, number of

terms in the series, the continuity class, number of panels,

curvature of the panels, and control point location on the
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-- panels. In the next two chapters the method will be applied

to the problems of flow over a circular cylinder, and flow

over several different airfoils. The effects of the

parameters noted above will be evaluated, and the results

will be compared with those of other two dimensional

methods.
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IV. Application to the Circular Cylinder

The purpose of this chapter is to apply the present

method to the problem of flow over a circular cylinder,

which has been chosen as a test case for a number of

reasons. First, the circl3 is a simple shape for which the

exact solution in terms of both singularity distribution and

surface velocity is easily computed. Additionally, the

surface is free of slope discontinuities which will remove

the ambiguities noted earlier which are associated with a

surface singularity distribution at a corner and with the

application of the Kutta Condition. It is realized, of

course, that the circle would seem to be ideally suited for

a method which uses circular arcs for panels.

An extensive study will also be conducted to determine

the effect of a number of parameters on the accuracy of the

solution. These include the singularity type, the number of

terms in the singularity distribution, the number of panels,

continuity, and control point location. The following

sections will discuss the exact solution with which che

computed solution will be compared, the panel method

formulation of the problem, and the results of the parameter

sensitivity studies.
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* Exact Solution

a) Consider the classic problem of uniform flow over a

circular cylinder as shown in Figure 15. Although this

problem can be solved in several ways, the exact solution

will be developed in terms of source and vorticity surface

singularity distributions. This will provide an

introduction to the use of this method to obtain approximate

solutions to more complicated problems.

Source Distribution. Assume there exists a surface

source distribution, a(e) , on the cylinder shown in

Figure 15, and apply a zero normal velocity condition to

this problem. Let P go to p on the surface r=1 to obtain

from Eq 28, the normal velocity component induced by the

source sheet as

27

V (1,6) 2 + 1 G(8 0 )de 0  (52)r2f
0

The boundary condition is

Vr(1, e)+VOO = r (1,8)+cose = 0

so that Eq 52 becomes

27

a()+ f a(e 0 )de 0 = -2 cos e (53)

0

This is a Fredholm Equation of the Second Kind with4

parameter -- Since X is not an eigenvalue Eq 53 has
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a unique nontrivial solution. It can be obtained by

integrating Eq 53 to get

2w 2w-r 2T 1 27

H f (e)dO+f iLf U(Oo)deojde = 2 cos 6 d6 (54): Io~ o oo.o Lo o.o c °
V,.

Letting

27T

Qs f " C( o0 )de0
0

where Q is the total source strength

Eq 54 becomes

27Qs+Qs _0

Therefore

Qs=

and

a(6) - -2 cos e

The induced normal and tangential velocities on the surface

are

v (1,8) = -cose
r

and
v t(1,e) = -sine

and the total tangential surface velocity is
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Vt  vt + V = -2 sin 6 (56)
t t

The natural result of this formulation is that the total

source strength is zero, as should be expected both in this

exact solution and in the subsequent approximate solutions.

The deviation from zero of the total source strength can be

used as a measure of the accuracy of the approximate

solution.

As was discussed in Chapter II, the flow in the

interior region of a closed body is independent of that in

the exterior region. For the choice of a source

distribution on the cylinder with a zero normal velocity

boundary condition, the flow pattern in the interior of the

cylinder is shown in Figure 16a.

Vorticity Distribution. This problem can also be

solved using a surface vorticity distribution and a zero

internal tangential velocity boundary condition. In this

case the perturbation tangential velocity on the interior

surface of the cylinder due to a vorticity

distribution, y(e) is

27r
v -Y + 1(57)

vt(1e = y6 f y(eO)deo (7

0

Applying the boundary condition

vt + V = vt -sin e 0
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Eq 57 becomes

2w
i [ (58)

y(e)- f y(e 0 )de0 = -2 sin e

0

Recall that this is a Fredholm Integral Equation of the

Second Kind with parameter X = L Since X is an2w

eigenvalue, a solution to Eq 58 exists only if

2w

f u(e0)f(e0 )de0 = 0 (59)

0

when f(eo) = -2 sin e0

and where u(eo) is a solution to

27r
u(e) f u(e0)de0 0 (60)

0

Clearly u(e0 ) = cj (where c. is any constant is a

solution to Eq 60, and thus is an eigenfunction of Eq 58.

Given any c. Eq 59 holds; therefore, the general solution

to Eq 58 is

YMe = (6 )+I Z

where yp(e) is a particular solution and Z c3  is a
|.3

, sum over all linearly independent eigenfunctions. But since

each cj is a constant only one will be linearly

independent; therefore Z c M=D where D is any constant.
'i J J

By inspection, YpCe) = -2 sin e , so that
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inside the cylinder (see Figure 16b) compared with the non

zero flow produced by the source distribution.

Combined Source/Vorticity Distribution. The preceeding

two approaches can be combined by assuming source and

vorticity distributions of the form

O(e) = -A cos e (64c)

r
y(e) = -B sin e + '-7 (64b)

where A and B are constants to be determined. The total

external normal velocity is then

Vn (1,0) = (1- A+B Cos (65)

and a zero normal velocity boundary condition requires that

A + B =2 (66)

The total tangential velocity is then, using Eq 66,

V(l,e) = -sin e - -- sin 6 + r -2sine+ (67)
t2 sine 7 F5J

The velocity given by Eq 67 is the same for any values of A

and B as long as Eq 66 is satisfied.

For example, choosing A = B = 1 is equivalent to
6

setting the source strength equal to the normal component
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Panel Method Solution

The method developed in Chapter III will now be applied

to the circular cylinder problem. The circle will be

divided into N panels of equal arc length with panel number

1 centered on the trailing edge stagnation point, as shown

in Figure 17. While Eq 48, termed the element centered

formulation, is the preferred singularity distribution for

the case of a general body , when it is used for the case of

a circle with equally spaced panels with control points at

panel centers (the points about which the distribution is

expanded) some elements of the velocity influence

coefficients become zero, producing a singular matrix. For

this reason Eq 47, termed the element non-centered

formulation, will be used to represent the singularity

distribution for flow over a circle.

An advantage of using this series is that the

continuity matrices become diagonal. A disadvantage is that

the results are not completely symmetric. The degree of

symmetry increases as the overall accuracy of the solution

4 is increased by varying other parameters. The results do

exhibit a polar symmetry about the origin. That is, the

results on a ray connecting two points on the circle and

U passing through the origin are identical. Note that a

solution which assumes symmetry has not been developed so

that the method may be applied to asymmetric airfoils.
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Results

The results of the application of the method to the

circular cylinder problem will be presented in terms of

K velocity error plots since the exact velocity on the

cylinder can be computed. First, the effects of the various

parameters will be compared using a series of maximum

absolute velocity error plots. This will be followed by a

consideration of the local error distribution on the

surface, and finally a discussion of the sensitivity of the

solutions to control point location will be presented.

Although no special attention was given to the question of

computational efficiency, a limited assessment of the effect

of the higher order method on efficiency will be made. In

general, each solution presented required no more than

several seconds of computer time on a CDC 6600/CYBER 74

computer.

Global Error. Figures 18 to 21 show the effects on

accuracy due to panel size, or number of elements (N),

continuity (C), and number of terms (Q) in the singularity

distributions for various choices of singularity and

boundary condition. Figure 18 also shows lines of constant

computer time which will be discussed later. These charts

show the maximum absolute value error in surface normal or

tangential velocity versus N for various combinations of Q

-I
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and C. The ranges on these parameters are

4 N 48

1 Q 4

0 C 3

L + Q - C = Control Points
Per Panel

From the solution obtained for each case, velocities on the

circle were computed at 120 equally spaced points around the

circle, and from these the largest absolute value errors

were determined according to Eq 69.

E = X v comp ( i )-Ve 
( i9.'. V ](69)

Vi

To i=1,2 .... 120

This approach is a simple way of comparing the effect of the

above parameters on the relative accuracy of the computed

solutions for various choices of the parameters, and it

allows the effects of these parameters on the solution to be

studied. The values for maximum error are not to be

interpreted, however, as the largest error anywhere on the

surface for a particular solution. Since the velocities are

singular at panel endpoints the error there can be made

arbitrarily large by computing velocities at points closer

and closer to the panel endpoints (at least for theii

discontinuous cases). Another fact to note concerning the
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above figures is that points are missing for certain

parameter combinations because the influence coefficient

matrices were singular. Examination of the matrices in

- .question revealed that this phenomena is a numerical result

of the symmetry of the circle problem.

Figures 18 and 19 show the maximum absolute errors in

normal and tangential velocity respectively for a source

distribution on the circle using a normal velocity boundary

condition. Figures 20 and 21 show the same maximum absolute

errors for a vorticity distribution for which the total

circulation was specified as zero. Results for the case of

non zero circulation were nearly identical.

The symmetry of the problem resulted in three

interesting effects. First, the total source strength is

identically zero for all cases as it should be for an exact

solution. Second, total circulation in the vorticity case

can be specified without adding an additional equation to

the system. The reason for this is that the expression for

net circulation is embedded in the left hand side of the

problem, and can be conveniently extracted and fixed.

Although this would not in general be an acceptable method

of specifying circulation, the symmetry of the problem

ensures that this technique will be successful for the

circular cylinder case. Third, while the case of a vortex

only distribution with normal velocity boundary conditions
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difference, and the rate of accuracy improvement both

increase up to the Q=3 cases. However as Q goes from Q=3 to

Q=4 the effects of continuity seem to play a more important

role than in the source case. For the Q=2 case the

continuous solution is much better than the discontinuous

solution, in contrast to the source case where the two were

very close, with the discontinuous case being slightly

better. Considering the Q=3 cases, it is found that both

the C=O and C=2 cases are actually better than the Q=4, C=O

case. In fact, if EQC denotes the error for the case Q

and C, the .lative level of error for the normal velocity

is seen to be

E 41 E4 < E30 3 <

while that for the tangential velocity is seen to be

E41 < E43 < E32 < E30 < E40

For a given value of Q, continuity is important for the

tangential velocity error, but additional degrees of

continuity beyond C=1 are not required. Also, the effect of

increasing Q from 3 to 4 is not clear in that, contrary to

what might be expected, the benefit of the additional term

seems to depend on the particular continuity requirement

that is imposed.

It has been noted that a discontinuous distribution of
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, Panel End Point
X Control Point

*velocity induced by
v o r t e x d i s c o n t i n u i t y , _ _ , o r a i e t oi~i:normal direction

at control point

discontinuity

sources gives better results than does a continuous

(S distribution, while the opposite is true for the vortex

case. A possible explanation for this lies in the

characteristics of the singularities themselves coupled with

the normal velocity type boundary condition which was used

in the above cases.

For the case of a vortex distribution, a discontinuity

in strength at a panel juncture will act like a line vortex,

the effect of which will be felt mainly by control points

near the panel juncture, as opposed to control points which

* are far away from it. The velocity induced by this line

vortex at these nearby control points will usually have a

significant component normal to the panel because most

* panels are not highly curved. This can be seen

qualitatively in the sketch above. This normal component of
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S Panel End Point normal direction
X Control Point at.......at control point

velocity induced by

discontinuity

velocity which would not be there if the singularity

distribution were continuous, is very effectively cancelled

by the normal velocity boundary condition which was used,

but the vortex strength solution thus obtained is not what

it would be if the vortex distribution was continuous. Thus

it seems reasonable that the vortex case would be sensitive

to whether or not a continuous distribution was used.

It is also reasonable to expect that the source

distribution might be less sensitive to imposition of

continuity for similar reasons. In the source case the

velocity component induced by a discontinuity at a panel

Juncture at a nearby control point would be small if the

panel was not highly curved (See the sketch above). Thus

this normal component of velocity would not have a large
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effect on the source strength solution obtained by applying

a normal velocity boundary condition.

Hess (Ref 12) has developed a criterion for

mathematical consistency of a panel method. This criterion

is that the singularity distribution should be of an order

one degree lower than the order of the surface element. He

notes, however that others (Ref 25) have violated this rule

and have obtained good results. The present results for the

cylinder given above are also in violation of this rule,

because, although the circular arc is a quadratic element,

accuracy improvements were obtained for the Q=2,3 and 4

cases. It is felt that the errors introduced during the

numerical implementation of the present method, or other

methods, probably overshadow the mathematical argument for

consistency.

Figure 22 shows the maximum error in normal velocity

for a source versus a vortex solution for several

combinations of Q and C. The element number ranges from 4

to 12. The vortex results were obtained using a tangential

velocity boundary condition. The maximum error in the

vortex solution is seen to be consistently less than that

for the source solution for the same number of elements.

Efficiency

Superimposed on Figure 18 are lines of constant

computer time for a CDC 6600/CYBER 74 computer. These times
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are useful only for comparing the effects of the parameters
shown on computational efficiency for the present method.

It can be seen that to obtain a given level of accuracy, for

K. example an error of fOE-3, one needs roughly 1.5 seconds of

computer time for a 3 term series, roughly 2.5 seconds for a

2 term series, and some much larger amount of time for a 1

term series. This means that, although for a given number

of elements computer time increases with Q, the level of

error is decreasing at a faster rate than Q is increasing.

Thus, for the present method with the ranges of Q and N

shown, the higher order singularity distribution is more

efficient than a lower order distribution.

Local Error. The previous discussion dealt with a

measure of what might be called global error. Now consider

a local error by looking at the actual error distribution on

the circle surface. Figures 23 through 28 show the normal

and tangential velocity errors on the surface, computed at

120 equally spaced points, as a function of angle measured

counterclockwise from the trailing edge stagnation point.

Results for the zero circulation case are given only for the

upper half circle because of flow symmetry. The errors

have the form

EQ Vcomp - Vex- E~QC V

The error in normal velocity is a measure of the leakage

through the surface. Since Vnex - 0 , Vner equals
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*the computed value Vflcomp and it can be shown

that 2Vn = a c e where a is the computed

source strength and ae is the exact source strength.

Thus the error in normal velocity is also a direct measure

of the error of the computed source distribution. All of

these results are for source distributions.

Figures 23a and 23b show the effect of Q on the normal

velocity error distribution for several 8 element cases.

These are all C=0 cases, and this is reflected in the

discontinuous nature of the error distributions. Note the

difference in scale between the Q=1 case, and the Q=2 and

Q=3 cases. Also note the reduction in magnitude and the

general flattening of the curves on a panel as Q increases.

This is a result of the fact that more control points on a

panel provide better control of the normal flow through the

panel.

Figure 24 shows the effect of N on the normal velocity

error distribution for the QC=32 case. Although the overall

level of error for either case is small, the effect of

doubling the number of elements is dramatic. Although these

curves seem to exhibit an oscillatory nature, this is to be

expected since the boundary conditions are satisfied only at

discrete points. In between these discrete points the

solution effectively over- and under-shoots the correct

solution. The magnitude of the apparent oscillations

decreases as N and Q increase.
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-Figures 25a and 25b show the effect of continuity on

the normal velocity error distribution on a 16 element

circle for the Q=2 and Q=3 cases. Although the continuity

of the singularity distributions is reflected in the

smoothness of the error curves (in these and previous

figures) the level of error does not seem to be

significantly affected by the degree of continuity. This is

consistent with previous results for the maximum absolute

velocity errors.

Figures 26 through 28 present similar figures for the

distribution of tangential velocity error. The general

improvement in accuracy as N and Q increase is apparent, as

is the general flattening of the error distributions as Q

increases.

Parameter Study. An extensive study using a source

distribution with N=16 was made to determine the sensitivity

of the solution to control point location on a panel. All

the results to this point have been for control points which

4 were equally spaced on a panel. For cases which require one

control point per panel the location of the control point

was varied between 20% and 80% of a panel's arc length. For

0 cases which require more than one control point per panel

all but one were equally spaced and fixed on a panel, while

one was allowed to vary between the aforementioned limits.

0 In one case which required two control points per panel both
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TABLE V

Fixed Control Point Location

(fraction of panel arc length)

Control
Point No. 40 41 30 20

1 .25 .33 .33 .50

2 .50 .67 .67

3 .75

were allowed to vary.

Figures 29a and 29b show the effect of control point

location on maximum absolute normal and tangential velocity

error. The format of these figures is the same as in

Figures 18 through 21. Table V shows the locations of the

fixed control points for the multiple control point cases.

In general these figures show a relatively small effect of

control point location on the overall level of error in an

absolute sense, with similar results for both normal and

4 tangential velocity errors. A general observation that can

be made is that the C=O curves are all concave upward, while

the continuous cases are all concave downward, except for

* the QC=32 case. This would indicate that for C=O cases
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control points nearer the panel center would be more

effective, while the reverse would be true for the C not

equal to zero cases.

Figure 30 shows more detailed comparisons for the N=16,

QC=20 case. Since this case requires two control points per

panel, one was fixed, successively, at 10%, 25%, and 50% of

panel arc length, while the other was varied between 20% and

90% of the panel arc length. When the fixed control points

are at 10% and 25% of the panel arc length, the smallest

errors occur when the free control point is near 80%, and

the minimum for the case of the fixed control point at 50%

is when the free control point is also near 50%. This

indicates that a symmetric placement of control points on a

panel gives the smallest level of maximum error.

Figure 31 shows results for the only case is which more

than one control point was moved. In this case, where

QC=20, the control points were initially placed at 20% and

80% of the panel arc length, and then they were moved closer

together at the same rate. The abscissa, S, represents a

6@ fraction of panel arc length with one control point at S and

the second one at 1-S. These curves have minimums in

roughly the 20% to 30% range.

The results shown in Figures 29a and 29b are absolute

velocity errors. Figures 32a and 32b (1 control point case)

and 32c, and 32d (more than 1 control point case) reformat

this data by normalizing each curve by its own maximum value
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TABLE VI

Maximum Absolute Normal and Tangential Velocities

QC VN MAX VT MAX

10 280.70955 225.44110

20 31.58174 21.06721

21 17.45405 10.39468

30 .91676 .44371

32 .63308 .49764

40 .20180 .10712

41 .14625 .08988

43 .24076 .16825

so that the maximum value on each curve is 1. The values

used to normalize each curve are given in Table VI.

Although this presentation accentuates the effects of

control point location, previous comments remain valid.

In general, the variation in tangential velocity error

due to control point location was under 40%, and was often

under 25%. The method was judged to be not critically

sensitive to control point location since shifting this

location did not make order of magnitude changes in

* accuracy. The study does not, however, indicate

overwhelming evidence which would support one control point

location over another as a general rule. Thus the choice of

a

equally spaced control point locations is a rational and
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acceptable choice, and will be used in the airfoil

applications which will follow.

*i. Combined Distribution. Results presented up to this

point have been for source distributions or for vortex

distributions. Intuitively one might expect some advantage

to be gained by a combined source-vortex or source-doublet

solution method. That this approach seems fundamentally

sound can be argued as follows: source singularities are

more effective near stagnation points. In the forward

stagnation region the free stream must be countered by a

strong efflux and near the rear stagnation point the flow

must be drawn in by a strong influx. On the other hand,

a vorticity or doublet singularities are more effective in

generating and controlling surface tangential velocities,

and thus should dominate on those parts of the body where

tangential velocities are large. This precise behavior is

demonstrated by the source only and vorticity only exact

solutions.

4 Bristow (Ref 29) has found that a hybrid method based

on Green's third identity and employing higher order curved

panels is both accurate and numerically stable. In this

formulation, Green's identity specifies that the source

strength density, a , be equated to the surface normal

perturbation velocity component - . Then
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T(e) = = -vcose

A similar hybrid version of the present method was

developed by superimposing the source only and vorticity

only panel methods. This approach is tantamount to

splitting the free stream velocity into two equal parts, one

each for solving source only and vortex only problems. This

approach is identical to the A=B=I version of the

superimposed exact solution discussed earlier.

Solutions obtained in this way were substantially the

same as the vorticity panel results and offered no apparent

advantage since numerical instabilities were absent in both

methods. Figures 33 and 34 show the effects of N, Q, and C

on maximum absolute velocity errors for a source/vortex

combined distribution. An attempt to deviate from the

Green's identity specification of a was made by first

solving for by the source panel method using the full free

stream velocity and then solving for y under the influence

of the source distribution. For both cyclic and acyclic
problems this led to = constant for Q=1, and numerical

difficulties for Q=2.

Based on these results for the use of circular arc

panels to model flow past a circular cylinder, with and

without circulation, the computational evidence indicated no

advantage of the hybrid method, at least when satisfying

Neumann type boundary conditions. Also, from the standpoint
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of comparing and the physical vorticity distribution, the

hybrid method is inferior to a vorticity only solution.

Summary. Several conclusions can be drawn from this

study of the circular cylinder problem:

1. The accuracies obtainable from source only,

vorticity only, and combined source/vortex methods are

roughly equivalent. The vorticity method appears to be

superior for three reasons: its applicability to flows with

lift, its more accurate results for tangential velocity and

thus surface pressure, and its more accurate modeling of

physical vorticity.

2. Dramatic reductionR in velocity errors are achieved

by increasing Q, the number of terms in the series

I representation of singularity strength, through Q=3. A

linear distribution (Q=2) may, however, represent the best

- compromise between simplicity and accuracy.

3. Accuracy improvements were achieved by increasing N

(decreasing panel size), panel junctures, *he surface

velocity distributions were smooth with continuity and

discontinuous without it.

5. The method is not critically sensitive to control

point location provided control points are not located too

near panel edges.
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V. Application to Airfoils

The purpose of this chapter is to apply the method

developed previously to several types of airfoils in order

to assess its performance in these cases. The airfoils

which have been studied are a symmetric Joukowski airfoil,

an NACA 0024 airfoil, a thin symmetrical airfoil, and two

types of Karman-Trefftz airfoil. Initially a source

distribution was used to compute the potential flow over the

Joukowski airfoil to indicate whether or not the kind of

results obtained in Chapter IV for the circle could also be

obtained for an airfoil. Since these preliminary efforts

were promising, a source distribution was then used to

compute the flow over an NACA 0024 airfoil. This was used

because it is more representative of a real airfoil section

(i.e. it has a non zero trailing edge angle compared to the

Joukowski airfoil's cusped trailing edge), and other

0computational and experimental results were available for

comparison. A vortex distribution was then used to compute

the thin symmetrical airfoil.

These studies led to the application of the method

using source and vortex distributions to both a symmetric

and a cambered Karman-Trefftz airfoil. The bulk of the

effort was concentrated on these airfoils because they have

133



a non zero trailing edge angle, and because exact solutions

. are readily available for comparison. The unsuccessful

results using certain parameter combinations in computing

these airfoil cases led to the selection of a baseline

method which was then used in an extensive parameter study

and error analysis. This study was made for both types of

Karman-Trefftz airfoils at various angles of attack. It

U included the effects of panel size, number of terms in the

singularity distribution, panel distribution characteris-

tics, and point source location. An analysis of the error

introduced into the solution by the error in surface slope

and position at control points was also accomplished.

In the succeeding sections of this chapter results of

the application of the method to a Joukowski airfoil will be

presented, followed by results for the NACA 0024 airfoil,

and for a thin symmetrical airfoil. Results for Karman-

Trefftz airfoils, including detailed parameter studies, will

then be presented. Finally, conclusions regarding the value

of the method for airfoil applications will be discussed.

Joukowski Airfoil

As an initial test of the method when applied to an

airfoil, a 13% thick, symmetric Joukowski airfoil was

modeled using a source distribution. Cases were computed

for several combinations of N and Q, and the effect of panel

curvature was also investigated.
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TABLE VII

Paneling Nomenclature

P = NN.SYY

NN Number of Panels

S Paneling Symmetry Indicator

S=1 - Symmetric Panel Arrangement about X Axis

S=2 - Unsymmetric Panel Arrangement about X Axis

YY Unique Identifier (Number) for Panel Arrangement

YY=00 - Paneling Generated from Equal Angular
Increments in Complex Circle Plane

YY=O1,02 etc - Different Panelings Generated from
Unequal Angular Increments in Complex
Circle Plane

arrangement as paneling P-NN.SYY where this nomenclature is

defined in Table VII. For example, paneling P=45.100

represents an airfoil with 45 panels which are symmetrically

arranged about the x axis and which were generated by equal

angle increments in the complex circle plane.

Most of the results will be presented as plots of

surface tangential velocity error at control points. This

procedure implicitly assumes that the paneling is a good

model of the actual surface. Referring to Figure 43, the

exact and computed tangential velocities are determined at

the points PS and PM respectively. The point Ps is
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TABLE VIII

Preliminary Results for the Karman-Trefftz Airfoil

Method QC
10 20 21 30 31 32

Source, V =0 S S U S U S
n

Vortex, Vt  = 0 S S U S U U*

Vortex, V = 0 U U S U S U
n

S = Successful

U = Unsuccessful

* = Non Oscillatory Solution,

But Incorrect Lift

determined by requiring that it have the same x coordinate

as P4.

Preliminary Results. The method was initially applied

to a 19 panel model of the chosen Karman-Trefftz airfoil.

Both source and vortex singularities were used with the

singularity distributions expanded about the panel center

point, for various combinations of Q and C. Table VIII

indicates which of tL e initial efforts were successful.

Successful cases are those cases for which at least a

reasonable solution was obtained. Unsuccessful cases are

those cases for which the aerodynamic influence matrices
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were either algorithmically singular, or for which the

solution exhibited an oscillatory behavior. The asterisked

case was one for which the solution seemed reasonable,

except that the lift was considerably in error. Figures 44

and 45 show typical tangential velocity error results for

successful source and vortex calculations. For the vortex

case the Kutta condition was satisfied by placing an

internal point source at xS = .5 , and specifying zero

vorticity at the trailing edge.

Several approaches were tried to obtain successful

solutions for all cases. For the vortex cases a number of

alternate Kutta conditions were used. These were a

specification of zero vorticity at the trailing edge with an

internal point source, a specification of net circulation in

an error parameter approach, and a specification of zero

velocity normal to a trailing edge bisector at a point

slightly downstream of the trailing edge using both an

internal source, and an error parameter approach. The

results of these attempts were essentially identical to

those shown in Table VIII. The error parameter approach is

equivalent to the internal point source approach, based on

results to date. The unsuccessful cases were also attempted

using the non centered form of the series expansion with no

change in the results.

For the source case, Fig 46 shows an unsuccessful
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of increasing N is to decrease the magnitude of the point

source strength and thus the velocities induced by the

source are correspondingly reduced. Figure 48 shows the

effect of changing Q for a 45 element case. This effect is

not large, but it is interesting to note that the Q=3 cases

do not exhibit the source induced error apparent in the Q=2

cases, although the magnitude of the source strengths are of

the same order. The Q=3 case, however, has two control

points on a panel, and with this additional control point

the normal flow on the panel is more effectively controlled.

Figure 49 shows the effect of additional panels (and

control points) near the source location. The airfoil used

in this figure is the 65 element airfoil of Figure 47, with

the addition of 10 panels on each of the upper and lower

surfaces between 40% and 60% chord for a total paneling of

85 elements. The point source location remained

at X.S= . The result is that the additional control

points in the vicinity of the source control the source

strength quite well.
.4

Effect of Point Source Location. A study was conducted

to determine more precisely the effect of the point source

location on the solution. Figures 50a and 50b show the

tangential velocity error for a 45 element airfoil for the

Q=2 and 3 cases at a = .0 where the internal point was

placed at one of four locations, Xs . There are two

interesting points to note in these figures. The first is
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that the effect of changing from Q=2 to Q=3 removes the

source induced error for reasons discussed above. The

second is that the source induced error is indeed a very

local effect. Whether the source is at Xs=.O1, .1

or .5 , the solution at the trailing edge remains

unaffected, and when the source is at Xs  .9 , the

solution over the leading 80% of the airfoil is unchanged.

The effects are local because the source strengths are

small, and their effect on velocity falls off as the 4 nverse

square of the distance from the source. It shou.d be

mentioned that another way of diffusing the effect of the

point source would be to use a distributed source on a line

inside the airfoil.

If the accuracy of the solution over the whole airfoil

is considered, these results indicate that the best location

for the point source is very near the leading edge. For

this case the solution is excellent over 99% o± the airfoil,

while the source induced error at the nose is masked

somewhat by the, in general, larger error that occurs in

this region. These errors are partly due to the fact that a

panel method will have difficulty accounting for the rapid

*G changes that occur in velocity as one moves away from the

stagnation point. On physical grounds it might also be

argued that for an airfoil with a blunt nose, a point source

* near the nose would be able to more effectively control the
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oncoming free stream than would the surface vorticity in the

nose region.

Effect of Panel Geometry Characteristics. A study was

also conducted to determine the effects of panel geometric

characteristics on the solution. A number of these

geometric parameters are involved in the present method,

including the angle subtended by each panel, the arc length

of each panel, and the curvature of each panel. One would

intuitively expect these geometric parameters to vary in a

smooth manner around the airfoil, making a reasonable

approximation to the actual airfoil characteristics. The

panel approximation is of course, only a piecewise

continuous representation of the surface, and will exhibit

discontinuities of curvature. The curvature of a panel in a

flat panel method is constant and equal to zero over a

panel, while in the present method the curvature is constant

but not zero over a panel, with variations from panel to

panel. One would also expect the panel arc length to vary

V somewhat smoothly around the airfoil. One would not expect

good results with a very small panel between two large

panels since the small panel's control point would be

overpowered by the nearby larger panels. Several

investigators (Henshaw, Ref 25, Hess, Ref 12) have suggested

as a rule of thumb that the ratio of arc lengths of adjacent

* panels be less than 1.5, but this is merely a suggestion
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which is probably somewhat dependent on the method being

- used.

Figures 51a - 51c show paneling characteristics for

*. five different panel arrangements for the Karman-Trefftz

airfoil being considered. The angle subtended by each

panel, the panel radius, and a normalized panel arc length

are plotted against panel number where panel one is the

first panel at the trailing edge. Since the airfoil and all

these panelings are symmetric only upper surface quantities

have been plotted. The panel models compared to the actual

surface have been plotted with an expanded vertical scale in

Figures 52a-52d. As was the case in Figure 42 almost no

difference between the two can be seen, except in the

I' paneling = 45.101 case which will be discussed below. The

tangential velocity errors for these panelings are shown in

Figures 53a and 53b for QC=21 and QC=31 respectively, with

a = 0 radians. Similar results for a = .1 radians are

shown in Figures 53c-53f. In these cases results are shown

for both upper and lower surfaces since they are not the

same at non-zero angle of attack.

The first panel arrangement which was computed was the

p=45.100 scheme, and while the geometric characteristics as

4 well as the velocity error results appear reasonable, it was

felt that some improvements could be obtained, particularly

in the leading edge region. This paneling was then modified

slightly by shifting panels toward the nose and the tail to
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produce the P = 45.101 paneling, but in so doing, a rather

- large jump in all of the panel geometric characteristics is

introduced near the 30% chord point at panel No.14. The

effect on the surface modeling of this modification can be

seen in Figure 52a. Figures 53a-53f show the dramatic

* effect of this discontinuity on the velocity error, but note

that the effect is quite localized near the discontinuity.

The P=45.101 paneling was then modified by slightly

moving slightly one of the panel defining points for the

panel on which the curvature jump takes place. The

resultant P=45.103 paneling is only slightly different than

the P=45.101 case, yet the curvature jump is gone and the

resultant error plots are much improved as shown in Figures

53a-53f.

The original P=45.100 paneling was modified in a

different way by removing panels at the nose and tail while

requiring that the 1.5 rule hold in these regions, and

adding panels over the mid section of the airfoil. This

*@ arrangement is the P = 46.102 paneling and the velocity

error plots for this case indeed show a reduction in error

at the leading and trailing edges compared to the P = 45.100

* case, indicating the validity of the 1.5 rule. This

paneling was then further modified by adding pa uls at the

leading and trailing edge to obtain the P=49.101 paneling.

* The errors for this case are similar to those for the
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P=45.102 arrangement with perhaps slight improvement near

I! the leading edge which may be attributable to the slightly

increased panel density.

These studies have shown that the present method is

H rather insensitive to changes in geometric paneling

characteristics provided that these characteristics conform

generally to what might be expected of a good model of the

airfoil; that is, the characteristics vary smoothly over the

airfoil. The method is sensitive to these characteristics

only when large changes occur over a small part of the

airfoil, but in these cases the sensitivity effects are

'ocalized. The effects are localized for the same reason

that the effect of the point source was a local one, i.e.

the effect of a panel decreases with distance from the

panel. The reason that the method is sensitive, locally, to

geometric characteristics is that the method is capable of

modeling geometry very well, particularly as N is increased.

This capability for faithful geometric representation is one

of the attractive features of panel methods in general.

Effect of Panel Curvature A study was also conducted

to determine the effects of panel curvature on the computed

solution. The parameter controls the curvature of each
4

panel by moving the third point, through which the circle is

drawn, in from the originally specified point on the airfoil

surface toward the straight line connecting the panel end

points. Thus 8 = 0 would be, in the limit, a flat panel,
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- and 8 = I is the normal case where the circle is drawn

through the three input points on the airfoil surface.

Figures 54a-54f show results for the P=45.102 airfoil

with a point source at XS = .01 for a range of B's from

1 to 0.2, and for two angles of attack. Note that the

errors increase as the panel becomes flatter. Also

note that as the panel becomes flatter the error is larger

for the three term series than for the two term series in

all cases. It seems that as the panel becomes flatter, or

approaches a lower order representation of the surface, a

lower order representation of the singularity (i.e. a 2 term

rather than a 3 term series) is sufficient to produce a

certain level of error. Of course these errors are larger

than are obtained by using the full circular arc panel. The

reason that better results are obtained using the more

highly curved panels is that they provide a better

representation of the surface in terms of location of the

singularity, and location of the control point.

'6 Effect of Angle of Attack. The results presented to

this point have included angles of attack c=.0 , and .1

radians, and have exhibited no strong sensitivity to the

4 angle of attack. To study more carefully the effects of

angle of attack, an N=19 element symmetrically paneled

airfoil was computed at various a's between 0., and .55

radians for both the two and the three term singularity
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series. The results of these calculations are presented in

Figure 55 which shows excellent agreement for the lift

coefficient over the entire angle of attack range for both

two and three term cases. Figure 56 shows the error in

lift coefficient; that is CLer CL - CL Note
er ex comp

that both the two and three term curves are linear with a

and that the error is quite small. Also, the error for the

Ithree term case is less than for the two term case, and the

slope of the three term curve is less than that for the two

term case so that the difference increases with a . A

consequence of the linearity of these curves is that the fig
C~re= 1-CLcm

relative error, defined as CL cop, is
rel CLex

essentially a constant. For , and
Q=2, CLrel=.00697

I' for Q=3, CLrel= .00578

Effect of Control Point Location. An important

question which arises in the discussion of any panel method

is the sensitivity of the solution to control point

placement. In the present method, the control point

location is assummed to be on the circular arc which
:4

represents the surface, and similarly, the normal to the

surface is represented by the normal to the circular arc.

Thus there is an error in both the control point location,

and the surface slope. Since surfacL location and slope can

be computed exactly for a Karman-Trefftz airfoil, a study

was done to determine the sensitivity of the current method

to these errors. Since these two parameters are independent
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- four cases can be considered:

1. the location and slope are computed, as in the

basic method, using circular arc panels.

2. the location is exact but the slope is computed

from the circular arc.

3. the location is computed from the circular arc

q panels but the slope is exact, and

4. both the location and the slope are exact.

For the two term model, in which there is one control point

per panel, the third panel defining point is used as the

control point in cases two and four. For the three term

model, where two control points are required on a panel

p instead of one, this approach cannot be used; so for the

three term model only cases one and three have been studied.

Figures 57a-e and 58a-e show tangential velocity error

results for the four cases as a function of several

parameters. Figures 57a and 57b are results for a nine

element airfoil at a = 0 for QC=21 and QC=31 . While

these figures do not give a clear indication of which

combinations of slope and control point parameters are

superior, they do show that contrary to what might be

expected, the use of the exact slope and control point

location is clearly not the best. Results for a = .1

radians shown in Figures 57c-e are similar. However, results

for a ten element airfoil, given in Figs 58a-e, show that
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the error using the basic method is generally small and

relatively constant over the center part of the airfoil,

.. while the other cases give somewhat larger errors which also

tend to vary more dramatically. As before, the use of the

exact slope and control point location clearly does not lead

to the best solution.

It is instructive to look at the slope percentage error

that results from using a computed control point. Figure 59

shows the slope error for a 19 element and a 45 element

airfoil with QC=21 and QC=31, using a computed control point

(i.e. the basic method). Note that the slope error is

constant and small over most of the airfoil for both element

numbers and for both values of Q. It is also clear that

increased panel density in the nose region significantly

reduces the slope error there. Since the errors on one or

two panels near the leading edge are relatively large

compared to the rest of the airfoil, one might suppose that

these errors account in part for the relatively larger

errors in tangential velocity that have been noted in the

nose region. This could not be the only cause of these

errors, though, since larger errors are encountered in the

trailing edge region as well, yet the slope errors in this

region are very small.

* . This study has shown that, contrary to what might be

expected, use of exact control point location and slope

information in the present method does not lead to improved
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accuracy in the solution. Since the representation of the

surface geometry in terms of slope error was seen to be very

good, other sources of error in the method probably drive

the error in the solution. The most likely sources of error

are the discrete application of the boundary conditions, and

the series approximation to the singularity distribution.

Thus the additional input data which would be required to

use exact slope and control point location is not justified,

and the use of computed slope and location information is

completely adequate to represent the surface geometry, at

least as far as the present method is concerned.

Effect of Camber. The airfoils which have been studied

up to this point have been symmetric. Now, the present

method will be applied to a slightly cambered Karman-Trefftz

airfoil which has a camber parameter of 3n/4 , a trailing

edge angle of 0.2356 radians, and a zero lift angle of

attack of -.0275 radians. The airfoil was paneled with 45

elements equally spaced in the circle plane, which produces

a slightly asymmetric paneling (designated as P=45.201) in

the airfoil plane. The basic method was used

with Xs=.01 and a=1 . Results for the QC=21 case at

angles of attack 0.0 and 0.1 radians are shown in Figures

60a and 60b. Both upper and lower surfaces are plotted

since the paneling is not symmetric. Figures 60c and 60d

show similar results for the QC=31 cases. These curves

exhibit characteristics similar to those noted earlier for
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the symmetric airfoil. These velocity errors near the nose

do appear to be larger, but this may be due in part to the

fact that the point source was placed very near the nose,

and also to the fact that the stagnation point at the nose

is not near the control point of the nose panel. For the

symmetric airfoil cases with a similar paneling the nose

panel control point was located at the stagnation point, so

*that the correct solution was obtained at that point.

Summary

In this chapter the method of circular arc panels was

applied to several different types of airfoils, and the

* characteristics which define the method were varied

Olt # systeuatically to determine their effect on solution

accuracy. The method was first applied to a Joukowski

airfoil, an NACA 0024 airfoil,a thin symmetric airfoil, and

a Karman-Trefftz airfoil using different combinations of

singularity type and varying the number of terms in the

series and the degree of continuity imposed. These

preliminary studies showed that accurate results were

consistently obtained for different types of airfoils and

for lifting and non-lifting cases by using the following

4 approach (which can be compared with the characteristics

shown in Table I): a 2 or 3 term (linear or quadratic)

vortex distribution is p laced on each panel, and continuity

" of the distribution is enforced at panel junctures. The
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panels are piecewise continuous circular arc elements

generated from the surface geometry with no series expansion

approximations. The boundary condition imposed at control

point is zero external normal velocity. The Kutta condition

is met by specifying zero vorticity at the trailing edge on

both upper and lower surfaces, and an internal point source

is added to close the formulation. All integrations are

performed analytically for maximum computational efficiency.

This basic method was then exercised on both symmetric and

cambered Karman-Trefftz airfoils at different angles fo

attack to determine the effects of N, Q, panel geometry,

point source location, panel curvature, and controfl point

characteristics on the accuracy of the method. The

following conclusions can be drawn:

1. Increasing N and/or Q produces more accurate

results.

2. The method is somewhat sensitive to paneling

geometric characteristics (panel subtended angle, panel

radius, and panel arc length), but the effect is local.
"0

3. The effect of the internal point source can be

* relatively large, but it is very localized and can be

controlled by using additional control points in the

vicinity of the source.

4. The accuracy of the solution generally increases

as the curvature of the panels is varied from nearly flat to

the circular arc model.
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5. The effect of exact representation of control

point location and slope does not lead to more accurate

solutions compared to results based on the computation of

the location and slope from the circular arc model.

6. The method produces good results over a range of

angles of attack, although the accuracy decreases linearly

as angle of attack increases.

The next chapter will summarize the development of the

present method, draw conclusions concerning the application

of the method to the circular cylinder and to airfoils, and

present suggestions for future work in this area.
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VI. Conclusions and Recommendations

Conclusions

The purpose of this effort was to develop a better

understanding of the effects of the several characteristics

involved in a panel method solution, and to provide guidance

and understanding for the further development of two and

three dimensional panel methods. To reach this goal, a new

panel method, based on the fundamental concepts of potential

theory and on a simple approach to curve approximation, has

* been developed. This method used a new approximating

element, the circular arc; and a new singularity

representation, the sine series.

The method was initially applied to the problem of flow

over a circular cylinder and the effects of varying several

parameters were studied. This effort showed that the

current method was capable of accurate results (which were

noted earlier), and it allowed an assessment of the effects

of the many characteristics which impact a solution. This

assessment was used to develop the method further.

Based on these studies of the circular cylinder the

method was applied to a Joukowski airfoil, an NACA 0024

airfoil, a thin symmetric airfoil and a Karman-Trefftz

S.airfoil. Initial studies were performed to assess the
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applicability of the method to airfoil shapes as a function

of singularity type, number of terms in the series (Q),

degree of continuity (C), type of boundary condition, and

Kutta condition formulation. Source and vortex

distributions were used, while values of Q varied from I to

3 and values of C varied from 0 to 2. For the vortex cases

3 types of Kutta condition were investigated: an error

* parameter approach with a trailing edge bisector condition,

an internal point source with a trailing edge bisector

condition, and an internal point source with a specification

of zero vorticity at the trailing edge. These studies

indicated that the method was not sensitive to the type of

Kutta condition used. Also not all combinations of Q and C

yielded acceptable solutions, depending on the type of

singularity which was used.

As a result of these preliminary studies a basic method

was chosen for further investigation. This method used a

* continuous 2 or 3 term vorticity distribution with a normal

* velocity boundary condition, and an internal point source

with zero vorticity at the trailing edge to satisfy the

Kutta condition. This basic method was then applied to a

4 symmetric Karman-Trefftz airfoil and detailed studies were

conducted to determine the effects of number of panels (N),

number of terms, point source Jocation, geometric paneling

0 characteristics, panel curvature, angle of attack, control
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point location and slope, and airfoil camber. Conclusions

which can be drawn from this study are:

1. The method produces very accurate solutions over

the major part of the airfoil, with the largest errors

occuring at the leading and trailing edges (i.e. the

stagnation point) . These errors are, however, always small

compared to the free stream and are small compared to the

exact solution except at points next to the stagnation

points.

2. Significant error reduction occurs as N is

increased, and reasonable, though not as large a reduction,

occurs as Q is increased from 2 to 3.

3. The effect of point source location is large but

is very local. It was found that these source induced

errors can be effectively controlled by either a 3 term

series, or by placing additional control points near the

source.

4. The method is generally insensitive to minor

* variations in paneling as long as the geometric parameters

governing the paneling: That is, panel curvature and panel

subtended angle, vary in a smooth manner around the airfoil.

Additionally, the requirement that adjacent panels maintain

a 3:2 or less ratio in arc length was found to be effective

in reducing errors, particularly at the trailing edge.

5. The effect of panel curvature is that accuracy

increases as the curvature increases from that of a nearly
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flat panel to that of a circular arc panel with three points

on the circular arc coincident with the airfoil surface for

both the 2 and 3 term series expansions.

6. The accuracy of the solution decreases slightly as

the angle of attack increases.

7. It was found that improved accuracy is not

generally obtained when either exact control point location

or slope information is used as opposed to when these

quantities are computed from the circular arc panel. Since

one might expect that the additional exact information would

improve the solution, the fact that it does not indicates

that other errors inherent in the formulation, such as the

singularity formulation and the discretization process

itself, may be the primary causes of error.

8. The method provides accurate results for a non-

symmetric airfoil, although the accuracy is not quite as

good as for the symmetric case.

Recommendations

Several areas for further work have become apparent

during the course of this research. These include improving

the method as a two dimensional tool and extending the

method to the three dimensional case. In terms of

improvement of the two dimensional method, further study to

* improve the solution at the leading and trailing edges could
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be undertaken. A possible approach to doing this would be

to modify the singularity distribution on one or several

panels at the leading or trailing edges. The rationale for

this approach is that the gradients in singularity strength

are largest in these regions, and it is possible that the

same series representation of the singularity can not

adequately model these gradients. For example, one might

use, at the trailing edges, a singularity strength which is

* proportional to the square root of the arc length measured

from the trailing edge because this singularity will go to

zero at the trailing edge more quickly than will a linear

function. A disadvantage, however, to using more

complicated representations of the singularity is that

numerical integration might be required to obtain the

influence coefficients for the panels involved.

Another approach to quickly improving solution accuracy

is based on the observation that the tangential velocity

errors near the leading and trailing edges do not vary

smoothly. This is true over a larger portion of the airfoil

for the 3 term series expansion cases as well. As a way of

smoothing these curves and reducing the overall error in the

solution a new veiocity curve could be fitted to the

calculated results using a least squares procedure, or some

type of averaging procedure. A systematic study of a

particular algorithm for doing this would be required to
&

establish the validity of this approach for the case of a
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general airfoil.

A third area for additional study is related to the

initial results presented in Chapter V. Further

investigation of the failure of certain parameter

combinations to yield solutions is required to fully

understand the proper way of to numerically solve the

integral equations of potential flow using the panel method

approach. This should include further study of the

application of the Kutta condition, particularly in the case

in which a solution was obtained using the internal velocity

boundary condition.

The method could also be extended to three dimensions.

For example, consider the case of a finite wing. Paneling

in the spanwise direction would have to be developed. A

scheme using flat panels spanwise, or one using curved

panels whose radii varied in the spanwise direction could be

investigated. Another alternative would be a complete

numerical integration in the spanwise direction coupled with

analytic intergration chordwise. If circular arc panels

were developed spanwise, the resulting integrations to

obtain the influence coefficients would probably have to be

performed numerically since the resulting equations are

elliptic. Another approach would be to use circular arc

panels only at the leading edge or at the wing tips since

* these are the regions where wing surfaces typically exhibit

219



I

the largest curvatures.

An additional extension of the two dimensional method

which would have application in three dimensional cases as

well would be to develop a procedure for computing forces

and moments on the airfoil or wing using computed velocities

and the surface paneling. This is an area where the details

of the surface model could play an important role, and an

assessment of the effect of the circular arc panel model on

these quantities would be a worthwhile result.
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Appendix A

Continuity Coefficient Matrices

The matrix equations governing singularity strength

continuity across panel junctures are given by eq.51 as

Q-1

[CkC fQkI = 0 C = 0,1,...3 (51)
k=O

C
where the Ck are obtained from eqs.49 and 50. These

matrices have the same form, shown in eq.70, for all values

of C and k. Note that the elements of the matrices do de-

pend on C and k but they have not been marked as such to re-

I, duce the complexity of the notation. For a given C and k

these elements depend on panel geometric characteristics as

defined in Fig 12. The elements themselves are defined in

Tables IX and X for C=1,2 and 3. For the case C=0 all el-

ements are zero. It should be noted also that the last row

in each matrix, which destroys its bandedness, defines a re-

lationship between the first and the last panel. In some

cases, such as where a slope discontinuity exists across

these panels, the conditions of continuity may be slightly

modified.
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o e2  f 3

cck c (70)

* 0

fi0 0 e f

N-14
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TABLE X

Form of f.i~ 1' .N

k
C 0 1 2 3

1 -e. e.i -e. e.

2 0 -e e

3 0 e. -e.i e.
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Appendix B

Velocity Influence Coefficients

In this appendix the normal and tangential velocity

influence coefficient matrices [Rk] and [Tk] will be

computed. These matrices give the velocity at any point

in the field that is induced by a source or vortex singu-

larity distributed on a circular arc. Also the velocity

influence coefficients for a reverse curvature panel, which

are needed to model a general airfoil, will be developed.

Source Distribut ion

Referring to Fig 12 and 61, the problem is to compute

the velocity at a point P(r,e) due to a source distribu-"

tion on a circular arc panel. The velocity is given by

i e + e (71)
"- (r,2) = 7 = er 96e e61

4where

= fc log R dl

B

0

R2 = r 2 +a 2 -2ar cos(e-e 0 )

Now

3r ~ R dl
B
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Figure 61. Panel Influence at a Point P.
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where

dl =adeo 2- = r -a cos(e-eo)

Thus

6 +

9r e r 2+a 2 2ar cose-60)
M- 6

Now let

r r 2+a 2
Da 2ar

Then

a f o)[r-a cos(6-8p)]d~o
3r f 2arLD-cos(e-6o)]

or

DO a 2  f a(eOo)d-cos(e-eO)]dOO
a r 2ar f D-cos(e-60)

and

8 +6

V (r8e) =1 f U(eO)[d-cos(O-6p)]d60
r' 4r J D-cos(e-0-o)

Similarly for

30 f 3R d

B
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where

-R ar sin(6-6 0)
36 R

Therefore

eM-
1 a(e0 )sin(6-e 0)de oV0r~) 47rd J D-cos(8-6 0)

6M_

Now

Q-1

G(eO) q sin k(60,-6~

k= 0

so that the general term is

e Mi

6+6

eM k
k qk f i (eo~e M)sin(e-eU)deo

vek (r,e) = e6D-cos(e-e 0) (73)

Note that the integrands here are well behaved for r~a

since then D>1 and D-cos(e-eo) 0 but at r=a ,D=1

so the point e0=e then requires special care. These ex-

pressions will be integrated assuming rta ,and then the

limit as r-'a of the results will be taken.
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Integration for r~a . To integrate these expressions

the following transformation is made:

Let

x= e0-e

X, em--e , x2 = em+-e

eo-eM = x+e-eM

Therefore

q X2 k
v k (r 6) k f sin (X+-e)[d-cosXldX (74)

X1

ve k(r,6) k (75)r _dJD-cosX
X1

Now let

W = D-cos X

and

y = 1-cos 2X = 1-(D-W)2 f (1-D2 )+2DW-W2

or

y = a+bw+cw
2

where

Sa = 1-D 2

b = 2D

C - -1

* Note that

dw = sinX dX
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and

sin X = /Y

The integrals in eqs.74 and 75 can be obtained by reduction

to the following standard forms (Refs 69 and 70):

f dw = -sin-I(cosX) -sin - I(D-W) (76a)

fdw = 2 Tan1 Tan- (76b)

f /Yw WT~T D-1 f

d dd 7cfvdw - + Df ! +(1-D2)f.. (76c)

fEdw -y'+ Dfdw (76d)

(w 2 dw =-w-3D ry + (D 2+j)f dw (76e)
r-w

* Note that eq.76a evaluated at the integration limits gives

X2

J -L -[sin 1(COSX2)-sin I(cosXj)] = 2X

xl .
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i- Using the above in eqs.74 and 75, and letting

FI(r $) = 2(d-D) [an- Tan 2

1. (77)

- Tan- D-1 Tan M
".D-1 2

iF(r In D-cos(6-e+eM) (78)

F2r,8) D-cos(-6-e+eM)(

x2=6-e+em x1=-6-e+eM W=6+e-eM

The following expressions for the velocities in the r and

6 directions due to a source distribution on a circular

arc are obtained for k=O to k=3

For k-0

Vr (r,e) = {26+(d-D)F 1(r,e)1 (79a)

V 0(r.6) = Z3qO F2(re) (79b)

For k=1

V 1(r ,) = -q3 {[(d-D)F 2 (r,e)-cos(Xz)+cos(Xl)]cos(e-eM)Vr 47rd

+[sin(X 2 )-sin(X1 )-(d-D)26+DFI(r,e)]sin(e-eM)}

(80a)
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Vea (r,e) =47Td 6)CS 6m

+[DF2(r 6)+COS(X2)-COS(Xl)]sin(e-eM (80b)

For k=2

V2(r e) =q2f6 0S2(~e)[(d-D)IsinX2-sinX, sin2X2+sin2w
r 4Trdl1  Mj 1  2I 4

+sin2(e-eM)[D(d-D)F2(r,)+(d-D) COSXZ.CcOsxlI

I-It 2 z-c sX nl2 66 [D(Dd)+*)26(dD)

.[sinXz-sinXI+ sin2X2+sin2w +D2 (d-D)PI(r,e)]

(81a)

V2 (rDG) = Jcos 2(e-e, r -~ -D(cosX2 -cosw)
6 4n'dI'

-(D2-1 )F2(r ,a)]+sin2(8e6m) (D2-* )+D( sinX 2+Sinw)

+sin2X24.sin2w -D(D 2_1)Fl (rte)]+sin2(eOM)

-[D F2(,e1)1LJCOSX2-COSW)+ CSXO2U
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and for k=3

V (re8) = o 3 89)C(d-D)(1-D2 )F2(r e)

+(d-D) [2D(cosXi-cosXz)-J( (D-cosX2) 2-(D-cosX) 2)1

+( 1-D2) tcosX 1-cosX 2 )+D [(D-coSX 2)2 2-(D-cosX,) 2)

* sin 3X2 _Sin 3XI + D(1-D)(sinX2-sinX,)

U, + 2D- (COSX2sinX 2-COSXinfX,)+(d-D)(D
24

-[D 2 (d-D)F2(r, e)+D(3D-2d)(cosX1 -cosX 2)

+ =(DcS2 (-oX

r(-3Dd -11D 
2 -4 3d-17D

* L'-~ -~.--)(sinX2-sinX,)+-c -

* ((D-cosXa )sinX2-(D-cosX1 )sinX,)
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- .((D-coSX 2)3sinX2-(D-cosX,)
3sinX,)

2___ 1___l 3D

*(2D241) F1 -O) (83a)

e (rd _6 12 {)osine.2.

-(sin,62 -S inXI)-( .s in2X2-s in2X 1

+46D(3-2D 2 )+ (1-D2) 2 FI(r,e)]4-3sin(e-6e"A)COS2(6eem)

-D (D COSX2 -(DcosX)2 ) ![(D-cosX 2)

-(D-cosX1 ) 3] +3sin2 (e e M)cOs( e-e) p D2 (sinX2-sinX,)

4.26D(D 2-*)1 2 C(D-coSX2 )sinX2-(D-cosX1 )sinX,]

-sin 
3 X2 sin'XI + 2 FI(r,e)]+sin 3 (6-0M

r 3D

1D 2 F2 (r,e)+3D2 (COSX2-COSXI)+ 3D [(D-coSX2 )2

-(D-cosX,)) ,~[(D-coSX2) -(D-cos 1 ~J (83b)
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Limit as r-a . The above formulas represent the ef-

fect of a source distribution on a circular arc at a point

* P(r,6) . They are clearly valid for rta , but if P lies

on the arc itself they exhibit special limiting behavior.

In this case P(r,8)-P(ae) with e(OeM-6 M+6) and the

unique limiting behavior is contained in terms with the fac-

tor Fl(r,e) . Now consider the factor VT//(D-1) in

Eq.77. As

r- D-1)f

But the tangent term multiplying this factor changes sign de-

pending on the value of 6 relative to the panel. Refer-

ring to Fig. 62 consider a point P1  such that 6(e M,6 M +6).

Then both tangent terms in Eq.77 are negative; i.e.

•em+6-el 6- e-6-e)
Tan 2 <0 and Tan - <0

Thus as r-a with r>a the inverse tangent difference

term in Eq.77 becomes

Tan (- ) - Tan-(- ) = 0

The same is true for the case of P 3 , except that the

tangents are positive. For the case of P 2  , however,

>0
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Figure 62. Limiting Behavior on a Panel as P(re)

goes to P(a e)
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" Figure 63. Reverse Curvature Formulation.
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and

8e -6-62
< 0

2

Thus

Tan-)-(+)_Tan '(_o) = j _(_ ) =

As an example, consider V (r,8) for the k=O case, andr
+let r-a . Note:that

• limurn d-D_
r-a - sgn (r-a)

Therefore

+ d-D
as r-,a d-

Thus for the case corresponding to P2  in Fig 61

Vr (a, e) - S [26+27]

While for the cases corresponding to P1  or P3

V (ae) = 4q-[26]

An interesting feature of this expression is that for the
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k=O case the dependence of e is removed by the limiting

process.

Transformation to Global Coordinates. Eqs 79-83 rep-

resent velocities at a point P in a polar coordinate sys-

tem based on the circular arc panel. To obtain the global

influence coefficient matrices [ Rk] and [ Tk ] these

equations must be transformed by a simple rotation into

tangent and normal velocities defined at the point P.

Reverse Curvature Panels

The formulas that have been developed are written in

a polar coordinate system in which the equation of the

panel is r=a . In addition, the direction of increasing

arc length along an element is assumed to be counterclock-

wise in such a coordinate system. This type of panel will

be referred to as a standard panel. A general cambered

airfoil, however, will have regions of curvature opposite

to that of a standard panel. By applying a transformation

the formulas for a standard panel can be used to compute

the velocities due to a reverse curvature panel.

The problem is to compute the velocity at a point P

due to a distribution on arc B (Fig 63).. Let @ be a

vector defined by connecting the panel endpoints P, and

A

P2  ; and let d be the direction of the normal to T
A

The point P is then obtained by reflecting P about T.
AA

Now it is clear that the velocity at P in the T
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direction due to arc A equals the velocity at P in the
A

T direction due to arc B . Similarly the velocity at P

in the f direction due to arc A can be related to the

equivalent velocity at P due to arc B . That is,

V^ (P) = VA (P)TB TA

A

V^ (P)=-VA (P)nB n A

Thus the velocity at a point P due to either a standard

or a reverse curvature panel can be computed in terms of

the local panel coordinate system. The components are then

transformed into a global system in which the point is

specified.

Vorticity Distribution

In two dimensions the velocity components induced by a

vortex distribution are directly related to those developed

above for a source distribution. If the velocity due to a

source is T where

= V e +Ve5s eS s r s

Then the velocity due to a vortex is

% . A
v = -V e+r e

v e r r5 e
Thus the potential flow problem can be immediately solved

for a vorticity distribution using the equations already

developed. 246
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